File size: 9,660 Bytes
18a9a60 5903789 18a9a60 5903789 18a9a60 51b2032 18a9a60 c66b450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import gradio as gr
from huggingface_hub import InferenceClient
import pandas as pd
import io
import mysql.connector
import os
HF_API_KEY = os.getenv("hf_key")
# Hugging Face API Key (Replace with your actual key)
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=HF_API_KEY)
def classify_task(user_input):
"""Classifies user task using Mistral."""
prompt = f"""
You are an AI assistant that classifies user requests related to SQL and databases.
Your task is to categorize the input into one of the following options:
- **generate_sql** → If the user asks to generate **SQL syntax**, like SELECT, INSERT, CREATE TABLE, etc.
- **create_table** → If the user explicitly wants to **create** a database/table on a local MySQL server.
- **generate_demo_data_db** → If the user wants to insert demo data into a database.
- **generate_demo_data_csv** → If the user wants to generate demo data in CSV format.
- **analyze_data** → If the user asks for insights, trends, or statistical analysis of data.
**Examples:**
1. "Give me SQL syntax to create a student table" → **generate_sql**
2. "Create a student table in my database" → **create_table**
3. "Insert some demo data in my database" → **generate_demo_data_db**
4. "Generate sample student data in CSV format" → **generate_demo_data_csv**
5. "Analyze student marks and trends" → **analyze_data**
**User Input:** {user_input}
**Output Format:** Return only the category name without any explanations.
"""
response = client.text_generation(prompt, max_new_tokens=20).strip()
return response
def generate_sql_query(user_input):
"""Generates SQL queries using Mistral."""
prompt = f"Generate SQL syntax for: {user_input}"
return client.text_generation(prompt, max_new_tokens=200).strip()
def generate_sql_query_for_create(user_input):
"""Generates SQL queries using Mistral."""
prompt = f"""
Generate **only** the SQL syntax for: {user_input}
**Rules:**
- No explanations, no bullet points, no extra text.
- Return **only valid SQL**.
**Example Input:**
"Create a student table with name, age, and email."
**Example Output:**
```sql
CREATE TABLE student (
student_id INT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
age INT NOT NULL,
email VARCHAR(255) UNIQUE NOT NULL
);
```
"""
response = client.text_generation(prompt, max_new_tokens=200).strip()
# Remove unnecessary text (if any)
if "```sql" in response:
response = response.split("```sql")[1].split("```")[0].strip()
return response
import pymysql
def create_table(user_input, db_user, db_pass, db_host, db_name):
try:
# Validate inputs
if not all([db_user, db_pass, db_host, db_name, user_input]):
return "Please provide all required inputs (database credentials and table structure).", None
# Generate SQL schema using Mistral
schema_response = generate_sql_query_for_create(user_input)
print(schema_response)
# Validate schema using sqlparse
parsed_schema = sqlparse.parse(schema_response)
if not parsed_schema:
return "Error: Could not generate a valid table schema.", None
# Connect to MySQL Server
connection = pymysql.connect(host=db_host, user=db_user, password=db_pass)
cursor = connection.cursor()
# Create Database if it doesn't exist
cursor.execute(f"CREATE DATABASE IF NOT EXISTS {db_name}")
connection.commit()
connection.close()
# Connect to the specified database
connection = pymysql.connect(host=db_host, user=db_user, password=db_pass, database=db_name)
cursor = connection.cursor()
# Execute the generated CREATE TABLE statement
cursor.execute(schema_response)
connection.commit()
return "Table created successfully.", None
except pymysql.MySQLError as err:
return f"Error: {err}", None
finally:
if 'connection' in locals() and connection.open:
cursor.close()
connection.close()
import mysql.connector
import re
import sqlparse # Install via: pip install sqlparse
def generate_demo_data_db(user_input, db_user, db_pass, db_host, db_name, num_rows=10):
"""Generates and inserts structured demo data into a database using LLM."""
if not all([db_user, db_pass, db_name]):
return "Please provide database credentials.", None
# Generate column definitions using LLM
schema_prompt = f"""
Extract column names and types from the following request:
"{user_input}"
**Output Format:**
- The first column should be an "ID" column (INTEGER, PRIMARY KEY).
- Provide appropriate SQL data types (VARCHAR(100) for text, INT for numbers).
- Use proper SQL syntax. No explanations.
Example Output:
```
CREATE TABLE demo (
ID INT PRIMARY KEY,
Name VARCHAR(100),
Age INT
);
```
"""
schema_response = client.text_generation(schema_prompt, max_new_tokens=200).strip()
# Validate schema using sqlparse
parsed_schema = sqlparse.parse(schema_response)
if not parsed_schema:
return "Error: Could not generate a valid table schema.", None
# Extract table schema
table_schema = schema_response.replace("CREATE TABLE demo (", "").replace(");", "").strip()
# Connect to MySQL and create the table dynamically
connection = mysql.connector.connect(host=db_host, user=db_user, password=db_pass, database=db_name)
cursor = connection.cursor()
cursor.execute(f"CREATE TABLE IF NOT EXISTS demo ({table_schema})")
# Generate demo data using LLM
data_prompt = f"""
Generate {num_rows} rows of structured demo data for this table schema:
```
{schema_response}
```
**Output Format:**
- Return valid SQL INSERT statements.
- Ensure all values match their respective column types.
- Use double quotes ("") for text values.
- No explanations, just raw SQL.
Example Output:
```
INSERT INTO demo VALUES (1, "John Doe", 25);
INSERT INTO demo VALUES (2, "Jane Smith", 30);
```
"""
data_response = client.text_generation(data_prompt, max_new_tokens=1000).strip()
# Extract SQL INSERT statements using a better regex
insert_statements = re.findall(r'INSERT INTO demo VALUES \([^)]+\);', data_response, re.DOTALL)
if not insert_statements:
return "Error: Could not generate valid data.", None
# Insert data into the database
for statement in insert_statements:
cursor.execute(statement)
connection.commit()
connection.close()
return "Demo data inserted into the database successfully.", None
def generate_demo_data_csv(user_input, num_rows=10):
"""Generates realistic demo data using the LLM in valid CSV format."""
prompt = f"""
Generate a structured dataset with {num_rows} rows based on the following request:
"{user_input}"
**Output Format:**
- Ensure the response is in **valid CSV format** (comma-separated).
- The **first row** must be column headers.
- Use **double quotes for text values** to avoid formatting issues.
- Do **not** include explanations—just the raw CSV data.
Example Output:
"ID","Name","Age","Email"
"1","John Doe","25","john.doe@example.com"
"2","Jane Smith","30","jane.smith@example.com"
"""
# Get LLM response
response = client.text_generation(prompt, max_new_tokens=10000).strip()
# Ensure we extract only the CSV part (some models may add explanations)
csv_start = response.find('"ID"') # Find where the CSV starts
if csv_start != -1:
response = response[csv_start:] # Remove anything before the CSV
# Convert to DataFrame
try:
df = pd.read_csv(io.StringIO(response)) # Read as CSV
except Exception as e:
return f"Error: Invalid CSV format. {str(e)}", None
# Save to a CSV file
file_path = "generated_data.csv"
df.to_csv(file_path, index=False)
return "Demo data generated as CSV.", file_path # Return file path
def analyze_data(user_input):
"""Analyzes data using Mistral."""
prompt = f"Analyze this data: {user_input}"
return client.text_generation(prompt, max_new_tokens=200).strip()
def sql_chatbot(user_input, num_rows=10):
task = classify_task(user_input)
if "generate_sql" in task:
return generate_sql_query(user_input), None
elif "create_table" in task:
return create_table(user_input, db_user, db_pass, db_host, db_name)
elif "generate_demo_data_db" in task:
return generate_demo_data_db(user_input, db_user, db_pass, db_host, db_name, num_rows)
elif "generate_demo_data_csv" in task:
response, file_path = generate_demo_data_csv(user_input, num_rows)
return response, file_path
elif "analyze_data" in task:
return analyze_data(user_input), None
return f"task:{task} \n I could not understand your request.", None
iface = gr.Interface(
fn=sql_chatbot,
inputs=[
gr.Textbox(label="User Input"),
gr.Number(label="Number of Rows", interactive=True, value=10, precision=0)
],
outputs=[gr.Textbox(label="Response"), gr.File(label="File Output")]
)
iface.launch()
# print("hi")
# print(create_table("create a SQL student table","root", "123456", "localhost", "demo")) |