File size: 1,419 Bytes
5db687f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
import gradio as gr


# Load and split PDF document
def load_doc(list_file_path):
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = 1024,
        chunk_overlap = 64
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits



def create_db(splits):
    model_kwargs = {'device': 'cpu'}

    embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en", model_kwargs =model_kwargs)
    vectordb = FAISS.from_documents(splits, embeddings)
    return vectordb


def initialize_database(list_file_obj, progress=gr.Progress()):
    # Create a list of documents (when valid)
    list_file_path = [x.name for x in list_file_obj if x is not None]
    # Load document and create splits
    doc_splits = load_doc(list_file_path)
    # Create or load vector database
    vector_db = create_db(doc_splits)
    return vector_db #, "Database created!"