File size: 4,726 Bytes
8b150bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import json
import logging
import os
from collections import defaultdict
from typing import Dict, List, Tuple

import mols2grid
import pandas as pd
from gt4sd.algorithms import (
    RegressionTransformerMolecules,
    RegressionTransformerProteins,
)
from gt4sd.algorithms.core import AlgorithmConfiguration
from rdkit import Chem
from terminator.selfies import decoder

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())


def get_application(application: str) -> AlgorithmConfiguration:
    """
    Convert application name to AlgorithmConfiguration.

    Args:
        application: Molecules or Proteins

    Returns:
        The corresponding AlgorithmConfiguration
    """
    if application == "Molecules":
        application = RegressionTransformerMolecules
    elif application == "Proteins":
        application = RegressionTransformerProteins
    else:
        raise ValueError(
            "Currently only models for molecules and proteins are supported"
        )
    return application


def get_inference_dict(
    application: AlgorithmConfiguration, algorithm_version: str
) -> Dict:
    """
    Get inference dictionary for a given application and algorithm version.

    Args:
        application: algorithm application (Molecules or Proteins)
        algorithm_version: algorithm version (e.g. qed)

    Returns:
        A dictionary with the inference parameters.
    """
    config = application(algorithm_version=algorithm_version)
    with open(os.path.join(config.ensure_artifacts(), "inference.json"), "r") as f:
        data = json.load(f)
    return data


def get_rt_name(x: Dict) -> str:
    """
    Get the UI display name of the regression transformer.

    Args:
        x: dictionary with the inference parameters

    Returns:
        The display name
    """
    return (
        x["algorithm_application"].split("Transformer")[-1]
        + ": "
        + x["algorithm_version"].capitalize()
    )


def draw_grid_predict(prediction: str, target: str, domain: str) -> str:
    """
    Uses mols2grid to draw a HTML grid for the prediction

    Args:
        prediction: Predicted sequence.
        target: Target molecule
        domain: Domain of the prediction (molecules or proteins)

    Returns:
        HTML to display
    """

    if domain not in ["Molecules", "Proteins"]:
        raise ValueError(f"Unsupported domain {domain}")

    seq = target.split("|")[-1]
    converter = (
        decoder
        if domain == "Molecules"
        else lambda x: Chem.MolToSmiles(Chem.MolFromFASTA(x))
    )
    try:
        seq = converter(seq)
    except Exception:
        logger.warning(f"Could not draw sequence {seq}")

    result = {"SMILES": [seq], "Name": ["Target"]}
    # Add properties
    for prop in prediction.split("<")[1:]:
        result[
            prop.split(">")[0]
        ] = f"{prop.split('>')[0].capitalize()} = {prop.split('>')[1]}"
    result_df = pd.DataFrame(result)
    obj = mols2grid.display(
        result_df,
        tooltip=list(result.keys()),
        height=900,
        n_cols=1,
        name="Results",
        size=(600, 700),
    )
    return obj.data


def draw_grid_generate(
    samples: List[Tuple[str]], domain: str, n_cols: int = 5, size=(140, 200)
) -> str:
    """
    Uses mols2grid to draw a HTML grid for the generated molecules

    Args:
        samples: The generated samples (with properties)
        domain: Domain of the prediction (molecules or proteins)
        n_cols: Number of columns in grid. Defaults to 5.
        size: Size of molecule in grid. Defaults to (140, 200).

    Returns:
        HTML to display
    """

    if domain not in ["Molecules", "Proteins"]:
        raise ValueError(f"Unsupported domain {domain}")

    if domain == "Proteins":
        try:
            smis = list(
                map(lambda x: Chem.MolToSmiles(Chem.MolFromFASTA(x[0])), samples)
            )
        except Exception:
            logger.warning(f"Could not convert some sequences {samples}")
    else:
        smis = [s[0] for s in samples]

    result = defaultdict(list)
    result.update({"SMILES": smis, "Name": [f"sample_{i}" for i in range(len(smis))]})

    # Create properties
    properties = [s.split("<")[1] for s in samples[0][1].split(">")[:-1]]
    # Fill properties
    for sample in samples:
        for prop in properties:
            value = float(sample[1].split(prop)[-1][1:].split("<")[0])
            result[prop].append(f"{prop} = {value}")

    result_df = pd.DataFrame(result)
    obj = mols2grid.display(
        result_df,
        tooltip=list(result.keys()),
        height=1100,
        n_cols=n_cols,
        name="Results",
        size=size,
    )
    return obj.data