Spaces:
Running
Running
File size: 6,268 Bytes
8b150bd 45d9693 8b150bd a29f8e7 7bacfb4 efe37fb a29f8e7 8b150bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import logging
import pathlib
import gradio as gr
import pandas as pd
from gt4sd.algorithms.conditional_generation.regression_transformer import (
RegressionTransformer,
)
from gt4sd.algorithms.registry import ApplicationsRegistry
from terminator.tokenization import PolymerGraphTokenizer
from utils import (
draw_grid_generate,
draw_grid_predict,
get_application,
get_inference_dict,
get_rt_name,
)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
def regression_transformer(
algorithm: str,
task: str,
target: str,
number_of_samples: int,
search: str,
temperature: float,
tolerance: int,
wrapper: bool,
fraction_to_mask: float,
property_goal: str,
tokens_to_mask: str,
substructures_to_mask: str,
substructures_to_keep: str,
):
if task == "Predict" and wrapper:
logger.warning(
f"For prediction, no sampling_wrapper will be used, ignoring: fraction_to_mask: {fraction_to_mask}, "
f"tokens_to_mask: {tokens_to_mask}, substructures_to_mask={substructures_to_mask}, "
f"substructures_to_keep: {substructures_to_keep}."
)
sampling_wrapper = {}
elif not wrapper:
sampling_wrapper = {}
else:
substructures_to_mask = (
[]
if substructures_to_mask == ""
else substructures_to_mask.replace(" ", "").split(",")
)
substructures_to_keep = (
[]
if substructures_to_keep == ""
else substructures_to_keep.replace(" ", "").split(",")
)
tokens_to_mask = [] if tokens_to_mask == "" else tokens_to_mask.split(",")
property_goals = {}
if property_goal == "":
raise ValueError(
"For conditional generation you have to specify `property_goal`."
)
for line in property_goal.split(","):
property_goals[line.split(":")[0].strip()] = float(line.split(":")[1])
sampling_wrapper = {
"substructures_to_keep": substructures_to_keep,
"substructures_to_mask": substructures_to_mask,
"text_filtering": False,
"fraction_to_mask": fraction_to_mask,
"property_goal": property_goals,
}
algorithm_application = get_application(algorithm.split(":")[0])
algorithm_version = algorithm.split(" ")[-1].lower()
config = algorithm_application(
algorithm_version=algorithm_version,
search=search.lower(),
temperature=temperature,
tolerance=tolerance,
sampling_wrapper=sampling_wrapper,
)
model = RegressionTransformer(configuration=config, target=target)
samples = list(model.sample(number_of_samples))
polymer = isinstance(
config.generator.tokenizer.text_tokenizer, PolymerGraphTokenizer
)
if algorithm_version == "rop_catalyst" and task == "Generate":
correct_samples = [(s, p) for s, p in samples if "." in s]
while len(correct_samples) < number_of_samples:
samples = list(model.sample(number_of_samples))
correct_samples.extend(
[
(s, p)
for s, p in samples
if "." in s and (s, p) not in correct_samples
]
)
samples = correct_samples
if task == "Predict":
return draw_grid_predict(samples[0], target, domain=algorithm.split(":")[0])
else:
return draw_grid_generate(samples, domain=algorithm.split(":")[0])
if __name__ == "__main__":
# Preparation (retrieve all available algorithms)
all_algos = ApplicationsRegistry.list_available()
rt_algos = list(
filter(lambda x: "RegressionTransformer" in x["algorithm_name"], all_algos)
)
rt_names = list(map(get_rt_name, rt_algos))
properties = {}
for algo in rt_algos:
application = get_application(
algo["algorithm_application"].split("Transformer")[-1]
)
data = get_inference_dict(
application=application, algorithm_version=algo["algorithm_version"]
)
properties[get_rt_name(algo)] = data
properties
# Load metadata
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
examples = pd.read_csv(
metadata_root.joinpath("regression_transformer_examples.csv"), header=None
).fillna("")
with open(metadata_root.joinpath("regression_transformer_article.md"), "r") as f:
article = f.read()
with open(
metadata_root.joinpath("regression_transformer_description.md"), "r"
) as f:
description = f.read()
demo = gr.Interface(
fn=regression_transformer,
title="Regression Transformer",
inputs=[
gr.Dropdown(rt_names, label="Algorithm version", value="Molecules: Qed"),
gr.Radio(choices=["Predict", "Generate"], label="Task", value="Generate"),
gr.Textbox(
label="Input", placeholder="CC(C#C)N(C)C(=O)NC1=CC=C(Cl)C=C1", lines=1
),
gr.Slider(
minimum=1, maximum=50, value=10, label="Number of samples", step=1
),
gr.Radio(choices=["Sample", "Greedy"], label="Search", value="Sample"),
gr.Slider(minimum=0.5, maximum=2, value=1, label="Decoding temperature"),
gr.Slider(minimum=5, maximum=100, value=30, label="Tolerance", step=1),
gr.Radio(choices=[True, False], label="Sampling Wrapper", value=True),
gr.Slider(minimum=0, maximum=1, value=0.5, label="Fraction to mask"),
gr.Textbox(label="Property goal", placeholder="<qed>:0.75", lines=1),
gr.Textbox(label="Tokens to mask", placeholder="N, C", lines=1),
gr.Textbox(
label="Substructures to mask", placeholder="C(=O), C#C", lines=1
),
gr.Textbox(
label="Substructures to keep", placeholder="C1=CC=C(Cl)C=C1", lines=1
),
],
outputs=gr.HTML(label="Output"),
article=article,
description=description,
examples=examples.values.tolist(),
)
demo.launch(debug=True, show_error=True)
|