File size: 6,268 Bytes
8b150bd
 
 
 
 
 
 
 
 
45d9693
8b150bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a29f8e7
 
 
 
7bacfb4
 
 
 
 
 
 
 
 
 
efe37fb
a29f8e7
8b150bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import logging
import pathlib

import gradio as gr
import pandas as pd
from gt4sd.algorithms.conditional_generation.regression_transformer import (
    RegressionTransformer,
)
from gt4sd.algorithms.registry import ApplicationsRegistry
from terminator.tokenization import PolymerGraphTokenizer
from utils import (
    draw_grid_generate,
    draw_grid_predict,
    get_application,
    get_inference_dict,
    get_rt_name,
)

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())


def regression_transformer(
    algorithm: str,
    task: str,
    target: str,
    number_of_samples: int,
    search: str,
    temperature: float,
    tolerance: int,
    wrapper: bool,
    fraction_to_mask: float,
    property_goal: str,
    tokens_to_mask: str,
    substructures_to_mask: str,
    substructures_to_keep: str,
):

    if task == "Predict" and wrapper:
        logger.warning(
            f"For prediction, no sampling_wrapper will be used, ignoring: fraction_to_mask: {fraction_to_mask}, "
            f"tokens_to_mask: {tokens_to_mask}, substructures_to_mask={substructures_to_mask}, "
            f"substructures_to_keep: {substructures_to_keep}."
        )
        sampling_wrapper = {}
    elif not wrapper:
        sampling_wrapper = {}
    else:
        substructures_to_mask = (
            []
            if substructures_to_mask == ""
            else substructures_to_mask.replace(" ", "").split(",")
        )
        substructures_to_keep = (
            []
            if substructures_to_keep == ""
            else substructures_to_keep.replace(" ", "").split(",")
        )
        tokens_to_mask = [] if tokens_to_mask == "" else tokens_to_mask.split(",")

        property_goals = {}
        if property_goal == "":
            raise ValueError(
                "For conditional generation you have to specify `property_goal`."
            )
        for line in property_goal.split(","):
            property_goals[line.split(":")[0].strip()] = float(line.split(":")[1])

        sampling_wrapper = {
            "substructures_to_keep": substructures_to_keep,
            "substructures_to_mask": substructures_to_mask,
            "text_filtering": False,
            "fraction_to_mask": fraction_to_mask,
            "property_goal": property_goals,
        }
    algorithm_application = get_application(algorithm.split(":")[0])
    algorithm_version = algorithm.split(" ")[-1].lower()
    config = algorithm_application(
        algorithm_version=algorithm_version,
        search=search.lower(),
        temperature=temperature,
        tolerance=tolerance,
        sampling_wrapper=sampling_wrapper,
    )
    model = RegressionTransformer(configuration=config, target=target)
    samples = list(model.sample(number_of_samples))
    polymer = isinstance(
        config.generator.tokenizer.text_tokenizer, PolymerGraphTokenizer
    )
    if algorithm_version == "rop_catalyst" and task == "Generate":
        correct_samples = [(s, p) for s, p in samples if "." in s]
        while len(correct_samples) < number_of_samples:
            samples = list(model.sample(number_of_samples))
            correct_samples.extend(
                [
                    (s, p)
                    for s, p in samples
                    if "." in s and (s, p) not in correct_samples
                ]
            )
        samples = correct_samples

    if task == "Predict":
        return draw_grid_predict(samples[0], target, domain=algorithm.split(":")[0])
    else:
        return draw_grid_generate(samples, domain=algorithm.split(":")[0])


if __name__ == "__main__":

    # Preparation (retrieve all available algorithms)
    all_algos = ApplicationsRegistry.list_available()
    rt_algos = list(
        filter(lambda x: "RegressionTransformer" in x["algorithm_name"], all_algos)
    )
    rt_names = list(map(get_rt_name, rt_algos))

    properties = {}
    for algo in rt_algos:
        application = get_application(
            algo["algorithm_application"].split("Transformer")[-1]
        )
        data = get_inference_dict(
            application=application, algorithm_version=algo["algorithm_version"]
        )
        properties[get_rt_name(algo)] = data
    properties

    # Load metadata
    metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")

    examples = pd.read_csv(
        metadata_root.joinpath("regression_transformer_examples.csv"), header=None
    ).fillna("")

    with open(metadata_root.joinpath("regression_transformer_article.md"), "r") as f:
        article = f.read()
    with open(
        metadata_root.joinpath("regression_transformer_description.md"), "r"
    ) as f:
        description = f.read()

    demo = gr.Interface(
        fn=regression_transformer,
        title="Regression Transformer",
        inputs=[
            gr.Dropdown(rt_names, label="Algorithm version", value="Molecules: Qed"),
            gr.Radio(choices=["Predict", "Generate"], label="Task", value="Generate"),
            gr.Textbox(
                label="Input", placeholder="CC(C#C)N(C)C(=O)NC1=CC=C(Cl)C=C1", lines=1
            ),
            gr.Slider(
                minimum=1, maximum=50, value=10, label="Number of samples", step=1
            ),
            gr.Radio(choices=["Sample", "Greedy"], label="Search", value="Sample"),
            gr.Slider(minimum=0.5, maximum=2, value=1, label="Decoding temperature"),
            gr.Slider(minimum=5, maximum=100, value=30, label="Tolerance", step=1),
            gr.Radio(choices=[True, False], label="Sampling Wrapper", value=True),
            gr.Slider(minimum=0, maximum=1, value=0.5, label="Fraction to mask"),
            gr.Textbox(label="Property goal", placeholder="<qed>:0.75", lines=1),
            gr.Textbox(label="Tokens to mask", placeholder="N, C", lines=1),
            gr.Textbox(
                label="Substructures to mask", placeholder="C(=O), C#C", lines=1
            ),
            gr.Textbox(
                label="Substructures to keep", placeholder="C1=CC=C(Cl)C=C1", lines=1
            ),
        ],
        outputs=gr.HTML(label="Output"),
        article=article,
        description=description,
        examples=examples.values.tolist(),
    )
    demo.launch(debug=True, show_error=True)