File size: 3,540 Bytes
09c907a
 
 
 
f746564
09c907a
f746564
09c907a
f746564
09c907a
a4eba41
09c907a
a4eba41
09c907a
a4eba41
09c907a
 
a4eba41
09c907a
a4eba41
09c907a
a4eba41
09c907a
a4eba41
09c907a
f746564
09c907a
f746564
09c907a
a4eba41
09c907a
 
a4eba41
09c907a
f746564
 
09c907a
 
 
 
 
f746564
09c907a
f746564
09c907a
 
 
a4eba41
09c907a
f746564
09c907a
 
 
 
 
 
 
 
3876e91
09c907a
3876e91
 
 
 
 
 
 
 
 
09c907a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Model documentation & parameters

**Algorithm Version**: Which model version to use.

**Target binding energy**: The desired binding energy. The optimal range determined in [literature](https://doi.org/10.1039/C8SC01949E) is between -31.1 and -23.0 kcal/mol.

**Primer SMILES**: A SMILES string is used to prime the generation.

**Maximal sequence length**: The maximal number of tokens in the generated molecule.

**Number of points**: Number of points to sample with the Gaussian Process.

**Number of steps**: Number of optimization steps in the Gaussian Process optimization.

**Number of samples**: How many samples should be generated (between 1 and 50).


# Model card -- AdvancedManufacturing

**Model Details**: *AdvancedManufacturing* is a sequence-based molecular generator tuned to generate catalysts. The model relies on a recurrent Variational Autoencoder with a binding-energy predictor trained on the latent code. The framework uses Gaussian Processes for generating targeted molecules.

**Developers**: Oliver Schilter and colleagues from IBM Research.

**Distributors**: Original authors' code integrated into GT4SD.

**Model date**: Not yet published. Manuscript accepted.

**Model version**: Different types of models trained on 7054 data points are represented either as SMILES or SELFIES. Augmentation was used to broaden the scope augmentation.

**Model type**: A sequence-based molecular generator tuned to generate catalysts. The model relies on a recurrent Variational Autoencoder with a binding-energy predictor trained on the latent code. The framework uses Gaussian Processes for generating targeted molecules.

**Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**: 
N.A.

**Paper or other resources for more information**: 


**License**: MIT

**Where to send questions or comments about the model**: Open an issue on [GT4SD repository](https://github.com/GT4SD/gt4sd-core).

**Intended Use. Use cases that were envisioned during development**: Chemical research, in particular, to discover new Suzuki cross-coupling catalysts.

**Primary intended uses/users**: Researchers and computational chemists using the model for research exploration purposes.

**Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.

**Metrics**: N.A.

**Datasets**: Data used for training was provided through the NCCR and can be found [here](https://doi.org/10.24435/materialscloud:2018.0014/v1) and [here](https://doi.org/10.24435/materialscloud:2019.0007/v3).

**Ethical Considerations**: Unclear, please consult with original authors in case of questions.

**Caveats and Recommendations**: Unclear, please consult with original authors in case of questions.

Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)

## Citation
Please cite:
```bib
@article{manica2023accelerating,
  title={Accelerating material design with the generative toolkit for scientific discovery},
  author={Manica, Matteo and Born, Jannis and Cadow, Joris and Christofidellis, Dimitrios and Dave, Ashish and Clarke, Dean and Teukam, Yves Gaetan Nana and Giannone, Giorgio and Hoffman, Samuel C and Buchan, Matthew and others},
  journal={npj Computational Materials},
  volume={9},
  number={1},
  pages={69},
  year={2023},
  publisher={Nature Publishing Group UK London}
}
```