File size: 23,093 Bytes
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4492ba
 
 
70bfc39
 
 
 
 
 
 
 
 
5148083
 
70bfc39
5148083
70bfc39
 
5148083
70bfc39
 
 
 
330cfdb
94f6c5d
330cfdb
94f6c5d
 
 
b58be51
 
 
 
94f6c5d
 
 
 
 
 
 
 
 
 
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f6c5d
 
70bfc39
 
 
2230a35
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230a35
94f6c5d
2230a35
70bfc39
 
 
 
 
 
 
db8120f
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230a35
94f6c5d
2230a35
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8120f
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
2230a35
94f6c5d
2230a35
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230a35
94f6c5d
2230a35
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230a35
94f6c5d
2230a35
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ebf80b
a3e24cd
70bfc39
7ebf80b
8617865
70bfc39
a3e24cd
 
5123f56
a3e24cd
8617865
 
70bfc39
a3e24cd
70bfc39
 
 
7ebf80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70bfc39
 
 
 
 
db8120f
70bfc39
 
 
 
 
 
 
 
 
 
 
a53224c
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d26b3
70bfc39
 
 
7ebf80b
 
 
 
 
 
 
 
 
 
 
 
70bfc39
7ebf80b
 
 
 
 
70bfc39
7ebf80b
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d3344b
a3e24cd
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
c6d26b3
70bfc39
 
 
 
 
a3e24cd
70bfc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e24cd
70bfc39
a3e24cd
70bfc39
8617865
70bfc39
8617865
e84e511
94f6c5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import os
import gradio as gr
import pandas as pd
import torch
import torch.nn as nn
import transformers
from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer, GenerationConfig, AutoModel, pipeline
import pandas as pd
import tensorflow as tf
import numpy as np
import math
import time
import csv
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
nltk.download('stopwords')
nltk.download('punkt')
import string
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime

########### Import Classifier Embeddings #########
class_embeddings = pd.read_csv('Embeddings/MainClassEmbeddings.csv')

########### DATA CLEANER VARIABLES #############
all_stopwords = stopwords.words('english') # Making sure to only use English stopwords
extra_stopwords = ['ii', 'iii'] # Can add extra stopwords to be removed from dataset/input abstracts
all_stopwords.extend(extra_stopwords)

modelpath = os.environ.get("MODEL_PATH")

########### GET CLAIMED TRAINED MODEL ###########
tokenizer = LlamaTokenizer.from_pretrained(modelpath)

model = LlamaForCausalLM.from_pretrained(
    modelpath,
    load_in_8bit=True,
    device_map='auto',
)

HF_TOKEN = os.environ.get("HF_TOKEN")

DATASET_REPO_URL = "https://huggingface.co/datasets/thepolymerguy/logger"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)

repo = Repository(
    local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

def store_log():
    with open(DATA_FILE, "a") as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=["count", "time"])
        writer.writerow(
            {"count": 1, "time": str(datetime.now())}
        )
    commit_url = repo.push_to_hub()
    print(commit_url)
    return 

########## DEFINING FUNCTIONS ###################

def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] 
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return tf.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.clip_by_value(input_mask_expanded.sum(1), clip_value_min=1e-9, clip_value_max=math.inf)
    
def broad_scope_class_predictor(class_embeddings, abstract_embedding, SearchType, N=5, Sensitivity='Medium'):
    predictions = pd.DataFrame(columns=['Class Name', 'Score'])
    for i in range(len(class_embeddings)):
        class_name = class_embeddings.iloc[i, 0]
        embedding = class_embeddings.iloc[i, 2]
        embedding = convert_saved_embeddings(embedding)
        abstract_embedding = abstract_embedding.numpy()
        abstract_embedding = torch.from_numpy(abstract_embedding)
        cos = torch.nn.CosineSimilarity(dim=1)
        score = cos(abstract_embedding, embedding).numpy().tolist()
        result = [class_name, score[0]]
        predictions.loc[len(predictions)] = result
    if Sensitivity == 'High':
        Threshold = 0.5
    elif Sensitivity == 'Medium':
        Threshold = 0.40
    elif Sensitivity == 'Low':
        Threshold = 0.35
    GreenLikelihood = 'False'
    HighestSimilarity = predictions.nlargest(N, ['Score'])
    HighestSimilarity = HighestSimilarity['Class Name'].tolist()
    HighestSimilarityClass = [x.split('/')[0] for x in HighestSimilarity]
    if SearchType == 'Google Patent Search':
      Links = [f'https://patents.google.com/?q=({x}%2f00)&oq={x}%2f00' for x in HighestSimilarityClass]
    elif SearchType == 'Espacenet Patent Search':
      Links = [f'https://worldwide.espacenet.com/patent/search?q=cpc%3D{x}%2F00%2Flow' for x in HighestSimilarityClass]    
    HighestSimilarity = pd.DataFrame({'Class':HighestSimilarity, 'Links':Links})
    return HighestSimilarity


def sentence_embedder(sentences, model_path):
  tokenizer = AutoTokenizer.from_pretrained(model_path) #instantiating the sentence embedder using HuggingFace library
  model = AutoModel.from_pretrained(model_path, from_tf=True) #making a model instance
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
  # Compute token embeddings
  with torch.no_grad():
    model_output = model(**encoded_input)
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) #outputs a (1, 384) tensor representation of input text
  return sentence_embeddings
    

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""


def convert_saved_embeddings(embedding_string):
    """
    Preparing pre-computed embeddings for use for comparison with new abstract embeddings .
    Pre-computed embeddings are saved as tensors in string format so need to be converted back to numpy arrays in order to calculate cosine similarity.
    :param embedding_string:
    :return: Should be a single tensor with dims (,384) in string format
    """
    embedding = embedding_string.replace('(', '')
    embedding = embedding.replace(')', '')
    embedding = embedding.replace('[', '')
    embedding = embedding.replace(']', '')
    embedding = embedding.replace('tensor', '')
    embedding = embedding.replace(' ', '')
    embedding = embedding.split(',')
    embedding = [float(x) for x in embedding]
    embedding = np.array(embedding)
    embedding = np.expand_dims(embedding, axis=0)
    embedding = torch.from_numpy(embedding)
    return embedding

########## LOADING PRE-COMPUTED EMBEDDINGS ##########

def clean_data(input, type='Dataframe'):
    if type == 'Dataframe':
        cleaneddf = pd.DataFrame(columns=['Class', 'Description'])
        for i in range(0, len(input)):
            row_list = input.loc[i, :].values.flatten().tolist()
            noNaN_row = [x for x in row_list if str(x) != 'nan']
            listrow = []
            if len(noNaN_row) > 0:
                row = noNaN_row[:-1]
                row = [x.strip() for x in row]
                row = (" ").join(row)
                text_tokens = word_tokenize(row)  # splits abstracts into individual tokens to allow removal of stopwords by list comprehension
                Stopword_Filtered_List = [word for word in text_tokens if not word in all_stopwords]  # removes stopwords
                row = (" ").join(Stopword_Filtered_List)  # returns abstract to string form
                removechars = ['[', ']', '{', '}', ';', '(', ')', ',', '.', ':', '/', '-', '#', '?', '@', '£', '$']
                for char in removechars:
                    row = list(map(lambda x: x.replace(char, ''), row))

                row = ''.join(row)
                wnum = row.split(' ')
                wnum = [x.lower() for x in wnum]
                #remove duplicate words
                wnum = list(dict.fromkeys(wnum))
                #removing numbers
                wonum = []
                for x in wnum:
                    xv = list(x)
                    xv = [i.isnumeric() for i in xv]
                    if True in xv:
                        continue
                    else:
                        wonum.append(x)
                row = ' '.join(wonum)
                l = [noNaN_row[-1], row]
                cleaneddf.loc[len(cleaneddf)] = l
        cleaneddf = cleaneddf.drop_duplicates(subset=['Description'])
        cleaneddf.to_csv('E:/Users/eeo21/Startup/CPC_Classifications_List/additionalcleanedclasses.csv', index=False)
        return cleaneddf

    elif type == 'String':
        text_tokens = word_tokenize(input)  # splits abstracts into individual tokens to allow removal of stopwords by list comprehension
        Stopword_Filtered_List = [word for word in text_tokens if not word in all_stopwords]  # removes stopwords
        row = (" ").join(Stopword_Filtered_List)  # returns abstract to string form
        removechars = ['[', ']', '{', '}', ';', '(', ')', ',', '.', ':', '/', '-', '#', '?', '@', '£', '$']
        for char in removechars:
            row = list(map(lambda x: x.replace(char, ''), row))
        row = ''.join(row)
        wnum = row.split(' ')
        wnum = [x.lower() for x in wnum]
        # remove duplicate words
        wnum = list(dict.fromkeys(wnum))
        # removing numbers
        wonum = []
        for x in wnum:
            xv = list(x)
            xv = [i.isnumeric() for i in xv]
            if True in xv:
                continue
            else:
                wonum.append(x)
        row = ' '.join(wonum)
        return row

def classifier(userin, SearchType):
    clean_in = clean_data(userin, type='String')
    in_emb = sentence_embedder(clean_in, 'Model_bert')
    
    Number = 10
    broad_scope_predictions = broad_scope_class_predictor(class_embeddings, in_emb, SearchType, Number, Sensitivity='High')

    class_links = []
    for i in range(Number):
      class_links.append("[[{}]]({})".format(broad_scope_predictions['Class'][i], broad_scope_predictions['Links'][i]))


    md_class = '\n'.join(class_links)

    store_log()

    return md_class

def generateresponse(history, temp, top_p, tokens):
    
    global model
    global tokenizer

    user = history[-1][0]

    PROMPT = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
    ### Instruction:
    {user}
    ### Response:"""

    pipe = pipeline(
        "text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=tokens,
        temperature=temp,
        top_p=top_p,
        repetition_penalty=1.15
    )

    outputs = pipe(PROMPT)
    outputs = outputs[0]['generated_text']
    outputs = str(outputs).split('### Response')[1]
    
    response = f"Response{outputs}"

    store_log()
    
    return response

def run_model(userin, dropd, temp, top_p, tokens):

    global model
    global tokenizer

    if dropd in ["An apparatus", "A method of use", "A method", "A method of manufacturing", "A system"]:
        PROMPT = claim_selector(userin, dropd)
    elif dropd in ["Generate a Detailed Description Paragraph", "Generate a Abstract", "What are the Benefits/Technical Effects"]:
        PROMPT = desc_selector(userin, dropd)

    pipe = pipeline(
        "text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=tokens,
        temperature=temp,
        top_p=top_p,
        repetition_penalty=1.15
    )

    outputs = pipe(PROMPT)

    outputs = outputs[0]['generated_text']
    outputs = str(outputs).split('### Response')[1]
    outputs = outputs.split('\n    \n    \n    \n*')[0]
    
    response = f"Response{outputs}"

    store_log()
    
    return response

def prosecute(application, priorart, temp, top_p, tokens):

    global model
    global tokenizer

    pipe = pipeline(
        "text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=tokens,
        temperature=temp,
        top_p=top_p,
        repetition_penalty=1.15
    )

    PROMPT = f"""
    Draft an argument for the patentability in favour of the application using the European Patent Office Problem Solution appraoch by summarising the difference between the Application and the prior art. If there is no differnce, say that the present invention is not novel/inventive.

    Application: {application}

    Prior Art: {priorart}

    ### Response: The objective technical problem solved by the present invention"""

    outputs = pipe(PROMPT)

    outputs = outputs[0]['generated_text']
    outputs = str(outputs).split('### Response')[1]
    outputs = outputs.split('\n    \n    \n    \n*')[0]
    
    response = f"Response{outputs}"

    store_log()
    
    return response

def ideator(userin, temp, top_p, tokens):

    global model
    global tokenizer

    pipe = pipeline(
        "text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=tokens,
        temperature=temp,
        top_p=top_p,
        repetition_penalty=1.15
    )

    PROMPT = f"""
    How can I make {userin}

    ### Response: You could implement the invention as follows:"""

    outputs = pipe(PROMPT)

    outputs = outputs[0]['generated_text']
    outputs = str(outputs).split('### Response')[1]
    outputs = outputs.split('\n    \n    \n    \n*')[0]

    
    response = f"Response{outputs}"

    store_log()
    
    return response

def Chat(userin, temp, top_p, tokens):

    global model
    global tokenizer

    pipe = pipeline(
        "text-generation",
        model=model, 
        tokenizer=tokenizer, 
        max_length=tokens,
        temperature=temp,
        top_p=top_p,
        repetition_penalty=1.15
    )

    PROMPT = f"""Below is a query from a user. Respond appropriately to the query.
    ### Query:
    {userin}
    ### Response:"""

    outputs = pipe(PROMPT)

    outputs = outputs[0]['generated_text']
    outputs = str(outputs).split('### Response')[1]
    outputs = outputs.split('\n    \n    \n    \n*')[0]
    
    response = f"Response{outputs}"

    store_log()
    
    return response
       
def claim_selector(userin, dropd):
    
    PROMPT = f"""
    Draft a patent claim 1 for {dropd} for the following invention: {userin}
    ### Response:{dropd} comprising:"""

    return PROMPT

def desc_selector(userin, dropd):
    
    PROMPT = f"""
    {dropd} for a patent application for the following invention: {userin}
    ### Response:"""

    return PROMPT

############# GRADIO APP ###############

theme = gr.themes.Base(
    primary_hue="indigo",
).set(
    prose_text_size='*text_sm'
)

with gr.Blocks(title='Patent Toolkit', theme=theme) as demo:
    
    gr.Markdown("""
    # GENERATIVE TOOLKIT FOR PATENT ATTORNEYS AND INVENTORS
    The patenting process can be complex, time-consuming and expensive. We believe that AI will one day alleviate these problems.
    
    As a proof of concept, we've trained Meta's Llama on over 200k entries, with a focus on tasks related to the intellectual property domain.

    We are currently running this demo on a less powerful version of our model due to computational limitations. If you would like to see our most powerful model in action, please contact us at this email: e.ogbomo21@imperial.ac.ic.uk
    
    We know that confidentiality is probably the number one concern for attorneys when considering using such tools. We don't store any of your inputs to use for further training and we don't use the OpenAI API (ChatGPT) as our backend, meaning that confidentiality is not comprimised!  
    
    Please note that this is for research purposes and shouldn't be used commercially. 
    
    None of the outputs of this model, taken in part or in its entirety, constitutes legal advice. If you are seeking protection for you intellectual property, consult a registered patent/trademark attorney.
    """)

    # with gr.Tab("Ideator"):
    #     gr.Markdown(""" 
    #     Use this tool to generate ideas for how to implement an invention/creation.
    #      """)
    #     with gr.Row(scale=1, min_width=600):
    #         with gr.Column():
    #           userin = gr.Text(label="Input", lines=5)
    #         with gr.Column():
    #           text2 = gr.Textbox(label="Output", lines=5)
    #     with gr.Row():
    #         btn = gr.Button("Submit")
    #     with gr.Row():
    #       with gr.Accordion("Parameters"):
    #           temp = gr.Slider(minimum=0, maximum=1, value=0.6, label="Temperature", step=0.1)
    #           top_p = gr.Slider(minimum=0.5, maximum=1, value=0.95, label="Top P", step=0.1)
    #           tokens = gr.Slider(minimum=5, maximum=2058, value=512, label="Max Tokens", step=1)

    #     btn.click(fn=ideator, inputs=[userin, temp, top_p, tokens], outputs=text2)

    with gr.Tab("Claim Drafter"):
        gr.Markdown(""" 
        Use this tool to expand your idea into the technical language of a patent claim. You can specify the type of claim you want using the dropdown menu.
        """)
        Claimchoices = gr.Dropdown(["An apparatus", "A method of use", "A method", "A method of manufacturing", "A system"], label='Choose Claim Type Here')        
        
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!', lines=5)
            text2 = gr.Textbox(label="Output", lines=5)
        with gr.Row():
            btn = gr.Button("Submit")
        with gr.Row():
          with gr.Accordion("Parameters"):
              temp = gr.Slider(minimum=0, maximum=1, value=0.6, label="Temperature", step=0.1)
              top_p = gr.Slider(minimum=0.5, maximum=1, value=0.95, label="Top P", step=0.1)
              tokens = gr.Slider(minimum=5, maximum=2058, value=512, label="Max Tokens", step=1)
                
        btn.click(fn=claim_selector, inputs=[text1, Claimchoices]).then(run_model, inputs=[text1, Claimchoices, temp, top_p, tokens], outputs=text2)
   
    with gr.Tab("Description Generator"):
        gr.Markdown(""" 
        Use this tool to expand your patent claim into a description. You can also use this tool to generate abstracts and give you ideas about the benefit of an invention by changing the settings in the dropdown menu.
         """)
        Descriptionchoices = gr.Dropdown(["Generate a Detailed Description Paragraph", "Generate a Abstract", "What are the Benefits/Technical Effects"], label='Choose Generation Type Here')
        with gr.Row(scale=1, min_width=600):
                    
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!', lines=5)
            text2 = gr.Textbox(label="Output", lines=5)
        with gr.Row():
            btn = gr.Button("Submit")
        with gr.Row():
          with gr.Accordion("Parameters"):
              temp = gr.Slider(minimum=0, maximum=1, value=0.6, label="Temperature", step=0.1)
              top_p = gr.Slider(minimum=0.5, maximum=1, value=0.95, label="Top P", step=0.1)
              tokens = gr.Slider(minimum=5, maximum=2058, value=512, label="Max Tokens", step=1)

        btn.click(fn=desc_selector, inputs=[text1, Descriptionchoices]).then(run_model, inputs=[text1, Descriptionchoices, temp, top_p, tokens], outputs=text2)
    
    # with gr.Tab("Prosecution Beta"):
    #     gr.Markdown(""" 
    #     Use this tool to generate ideas for how to overcome objections to novelty and inventive step. For now, this tool only works on relatively short inputs, so maybe try very simple inventions or short paragraphs.
    #      """)
    #     with gr.Row(scale=1, min_width=600):
    #         with gr.Column():
    #           application = gr.Text(label="Present Invention", lines=5)
    #           priorart = gr.Text(label="Prior Art Document", lines=5)        
    #         with gr.Column():
    #           text2 = gr.Textbox(label="Output", lines=5)
    #     with gr.Row():
    #         btn = gr.Button("Submit")
            
    #     with gr.Row():
    #       with gr.Accordion("Parameters"):
    #           temp = gr.Slider(minimum=0, maximum=1, value=0.6, label="Temperature", step=0.1)
    #           top_p = gr.Slider(minimum=0.5, maximum=1, value=0.95, label="Top P", step=0.1)
    #           tokens = gr.Slider(minimum=5, maximum=2058, value=512, label="Max Tokens", step=1)
        
    #     btn.click(fn=prosecute, inputs=[application, priorart, temp, top_p, tokens], outputs=text2)
     
    with gr.Tab("CPC Search Tool"):
        gr.Markdown("""
        Use this tool to classify your invention according to the Cooperative Patent Classification system. 
        Click on the link to initiate either an Espacenet or Google Patents classification search using the generated classifications. You can specify which you would like using the dropdown menu. 
        """)

        ClassifyChoices = gr.Dropdown(["Google Patent Search", "Espacenet Patent Search"], label='Choose Search Type Here')        
        with gr.Row(scale=1, min_width=600):
            with gr.Column(scale=5):
              userin = gr.Textbox(label="Input", placeholder='Type in your Claim/Description/Abstract Here',lines=5)
            with gr.Column(scale=1):
              with gr.Accordion("CPC classes"):
                output = gr.Markdown() #gr.Textbox(label="Output", lines=5)
        with gr.Row():
            classify_btn = gr.Button("Classify")
            classify_btn.click(fn=classifier, inputs=[userin, ClassifyChoices] , outputs=output)
        
    with gr.Tab("Chat"):
        gr.Markdown(""" 
        Do you want a bit more freedom over the outputs you generate? No problem! You can use a chatbot version of our model below. You can ask it anything. 
        We haven't done any filtering, so that we can understand exactly which biases/inappropriate responses exist in our model. 
        If you're concerned about any outputs, please get in contact with us to let us know what you saw. We will use this inform the development of later versions of this model.
         """)
        with gr.Row(scale=1, min_width=600):
            with gr.Column():
              userin = gr.Text(label="Question", lines=5)
            with gr.Column():
              text2 = gr.Textbox(label="Answer", lines=5)
        with gr.Row():
            btn = gr.Button("Submit")
            
        with gr.Row():
          with gr.Accordion("Parameters"):
              temp = gr.Slider(minimum=0, maximum=1, value=0.6, label="Temperature", step=0.1)
              top_p = gr.Slider(minimum=0.5, maximum=1, value=0.95, label="Top P", step=0.1)
              tokens = gr.Slider(minimum=5, maximum=2058, value=512, label="Max Tokens", step=1)
        btn.click(fn=Chat, inputs=[userin, temp, top_p, tokens], outputs=text2)

#    gr.Markdown(""" 
#    # THE CHATBOT
#    Do you want a bit more freedom over the outputs you generate? No problem! You can use a chatbot version of our model below. You can ask it anything. 
#    If you're concerned about a particular output, please 
#    """)
   
#    chatbot = gr.Chatbot([], elem_id="Claimed Assistant").style(height=500)
#    with gr.Row():
#        with gr.Column(scale=1):
#            txt = gr.Textbox(
#                show_label=False,
#                placeholder="Enter text and submit",
#            ).style(container=False)
#    
#    with gr.Row():
#        with gr.Accordion("Parameters"):
#            temp = gr.Slider(minimum=0, maximum=1, value=0.6, label="Temperature", step=0.1)
#            top_p = gr.Slider(minimum=0.5, maximum=1, value=0.95, label="Top P", step=0.1)
#            tokens = gr.Slider(minimum=5, maximum=1024, value=256, label="Max Tokens", step=1)
#        
#    txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
#            generateresponse, [chatbot, temp, top_p, tokens], chatbot)

    gr.Markdown("""
    # HAVE AN IDEA? GET IT CLAIMED 
    
    In the future, we are looking to expand our model's capabilities further to assist in a range of IP related tasks.
    
    If you are interested in using a more powerful model that we have trained, or if you have any suggestions of features you would like to see us add, please get in touch!
        
    """)
demo.queue(max_size=20)
demo.launch(show_api=False)