Spaces:
Runtime error
Runtime error
File size: 7,844 Bytes
8366b03 c2f7915 8366b03 c2f7915 8366b03 111455d 8366b03 fd75694 c2f7915 8366b03 c2f7915 8366b03 ff1d74e 12ef62d 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 bde1dff fad9462 bde1dff 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 8366b03 c2f7915 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from transformers import AutoModel, AutoTokenizer
from copy import deepcopy
import os
import ipdb
import gradio as gr
import mdtex2html
from model.openllama import OpenLLAMAPEFTModel
import torch
import json
# init the model
args = {
'model': 'openllama_peft',
'imagebind_ckpt_path': 'pretrained_ckpt/imagebind_ckpt',
'vicuna_ckpt_path': 'openllmplayground/vicuna_7b_v0',
'delta_ckpt_path': 'pretrained_ckpt/pandagpt_ckpt/7b/pytorch_model.pt',
'stage': 2,
'max_tgt_len': 128,
'lora_r': 32,
'lora_alpha': 32,
'lora_dropout': 0.1,
}
model = OpenLLAMAPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.half().cuda().eval() if torch.cuda.is_available() else model.eval()
print(f'[!] init the 13b model over ...')
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def re_predict(
input,
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
# drop the latest query and answers and generate again
q, a = history.pop()
chatbot.pop()
return predict(q, image_path, audio_path, video_path, thermal_path, chatbot, max_length, top_p, temperature, history, modality_cache)
def predict(
input,
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
if image_path is None and audio_path is None and video_path is None and thermal_path is None:
# return [(input, "图片和音频以及视频为空!请重新上传才能开启对话。")]
gr.Error("图片和音频以及视频为空!请重新上传才能开启对话。")
else:
print(f'[!] image path: {image_path}\n[!] audio path: {audio_path}\n[!] video path: {video_path}\n[!] thermal path: {thermal_path}')
# prepare the prompt
prompt_text = ''
for idx, (q, a) in enumerate(history):
if idx == 0:
prompt_text += f'{q}\n### Assistant: {a}\n###'
else:
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
if len(history) == 0:
prompt_text += f'{input}'
else:
prompt_text += f' Human: {input}'
with torch.no_grad():
response = model.generate({
'prompt': prompt_text,
'image_paths': [image_path] if image_path else [],
'audio_paths': [audio_path] if audio_path else [],
'video_paths': [video_path] if video_path else [],
'thermal_paths': [thermal_path] if thermal_path else [],
'top_p': top_p,
'temperature': temperature,
'max_tgt_len': max_length,
'modality_embeds': modality_cache
})
chatbot.append((parse_text(input), parse_text(response)))
history.append((input, response))
return chatbot, history, modality_cache
def reset_user_input():
return gr.update(value='')
def reset_dialog():
return [], []
def reset_state():
return None, None, None, None, [], [], []
with gr.Blocks(scale=4) as demo:
gr.HTML("""<h1 align="center">PandaGPT</h1>""")
gr.Markdown('''We note that the current online demo uses the 7B version of PandaGPT due to the limitation of computation resource.
Better results should be expected when switching to the 13B version of PandaGPT.
For more details on how to run 13B PandaGPT, please refer to our [main project repository](https://github.com/yxuansu/PandaGPT).''')
with gr.Row(scale=4):
with gr.Column(scale=1):
image_path = gr.Image(type="filepath", label="Image", value=None)
with gr.Column(scale=1):
audio_path = gr.Audio(type="filepath", label="Audio", value=None)
with gr.Column(scale=1):
video_path = gr.Video(type='file', label="Video")
with gr.Column(scale=1):
thermal_path = gr.Image(type="filepath", label="Thermal Image", value=None)
chatbot = gr.Chatbot().style(height=300)
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
with gr.Row(scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Row(scale=1):
resubmitBtn = gr.Button("Resubmit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 400, value=256, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
resubmitBtn.click(
re_predict, [
user_input,
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
history,
modality_cache
], show_progress=True)
demo.launch(enable_queue=True)
|