Spaces:
Running
Running
File size: 10,945 Bytes
3d98931 4d95fe3 3d98931 e6aebd3 3d98931 e583f25 47ebcc2 3d98931 47ebcc2 3d98931 ac9b41a 3d98931 9e430dc 3d98931 ac9b41a 3d98931 e583f25 3d98931 2ade6fb 3d98931 e6aebd3 ac9b41a 3d98931 4d95fe3 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 d357a83 3d98931 1d98f09 d357a83 3d98931 d357a83 3d98931 d357a83 3d98931 d357a83 3d98931 aedcb69 3d98931 e583f25 3d98931 aedcb69 3d98931 2ade6fb aedcb69 3d98931 f4d2586 3d98931 e583f25 2ade6fb 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 4d95fe3 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 3d98931 e583f25 aedcb69 3d98931 aedcb69 3d98931 aedcb69 e583f25 3d98931 aedcb69 3d98931 aedcb69 3d98931 f8b3c54 3d98931 a326770 e6aebd3 3d98931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# Gradio UI not currenlty working.
import gradio as gr
from fastapi import FastAPI
from langserve import add_routes
from langgraph.graph import StateGraph, START, END
from typing import Optional, Dict, Any
from typing_extensions import TypedDict
from pydantic import BaseModel
from gradio_client import Client
import uvicorn
import os
from datetime import datetime
import logging
from contextlib import asynccontextmanager
import threading
from langchain_core.runnables import RunnableLambda
from utils import getconfig
config = getconfig("params.cfg")
RETRIEVER = config.get("retriever", "RETRIEVER")
GENERATOR = config.get("generator", "GENERATOR")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Models
class GraphState(TypedDict):
query: str
context: str
result: str
reports_filter: str
sources_filter: str
subtype_filter: str
year_filter: str
metadata: Optional[Dict[str, Any]]
class ChatFedInput(TypedDict):
query: str
reports_filter: Optional[str]
sources_filter: Optional[str]
subtype_filter: Optional[str]
year_filter: Optional[str]
session_id: Optional[str]
user_id: Optional[str]
class ChatFedOutput(TypedDict):
result: str
metadata: Dict[str, Any]
class ChatUIInput(BaseModel):
text: str
# Module functions
def retrieve_node(state: GraphState) -> GraphState:
start_time = datetime.now()
logger.info(f"Retrieval: {state['query'][:50]}...")
try:
client = Client(RETRIEVER)
context = client.predict(
query=state["query"],
reports_filter=state.get("reports_filter", ""),
sources_filter=state.get("sources_filter", ""),
subtype_filter=state.get("subtype_filter", ""),
year_filter=state.get("year_filter", ""),
api_name="/retrieve"
)
duration = (datetime.now() - start_time).total_seconds()
metadata = state.get("metadata", {})
metadata.update({
"retrieval_duration": duration,
"context_length": len(context) if context else 0,
"retrieval_success": True
})
return {"context": context, "metadata": metadata}
except Exception as e:
duration = (datetime.now() - start_time).total_seconds()
logger.error(f"Retrieval failed: {str(e)}")
metadata = state.get("metadata", {})
metadata.update({
"retrieval_duration": duration,
"retrieval_success": False,
"retrieval_error": str(e)
})
return {"context": "", "metadata": metadata}
def generate_node(state: GraphState) -> GraphState:
start_time = datetime.now()
logger.info(f"Generation: {state['query'][:50]}...")
try:
client = Client(GENERATOR)
result = client.predict(
query=state["query"],
context=state["context"],
api_name="/generate"
)
duration = (datetime.now() - start_time).total_seconds()
metadata = state.get("metadata", {})
metadata.update({
"generation_duration": duration,
"result_length": len(result) if result else 0,
"generation_success": True
})
return {"result": result, "metadata": metadata}
except Exception as e:
duration = (datetime.now() - start_time).total_seconds()
logger.error(f"Generation failed: {str(e)}")
metadata = state.get("metadata", {})
metadata.update({
"generation_duration": duration,
"generation_success": False,
"generation_error": str(e)
})
return {"result": f"Error: {str(e)}", "metadata": metadata}
# start the graph
workflow = StateGraph(GraphState)
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("generate", generate_node)
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "generate")
workflow.add_edge("generate", END)
compiled_graph = workflow.compile()
def process_query_core(
query: str,
reports_filter: str = "",
sources_filter: str = "",
subtype_filter: str = "",
year_filter: str = "",
session_id: Optional[str] = None,
user_id: Optional[str] = None,
return_metadata: bool = False
):
start_time = datetime.now()
if not session_id:
session_id = f"session_{start_time.strftime('%Y%m%d_%H%M%S')}"
try:
initial_state = {
"query": query,
"context": "",
"result": "",
"reports_filter": reports_filter or "",
"sources_filter": sources_filter or "",
"subtype_filter": subtype_filter or "",
"year_filter": year_filter or "",
"metadata": {
"session_id": session_id,
"user_id": user_id,
"start_time": start_time.isoformat()
}
}
final_state = compiled_graph.invoke(initial_state)
total_duration = (datetime.now() - start_time).total_seconds()
final_metadata = final_state.get("metadata", {})
final_metadata.update({
"total_duration": total_duration,
"end_time": datetime.now().isoformat(),
"pipeline_success": True
})
if return_metadata:
return {"result": final_state["result"], "metadata": final_metadata}
else:
return final_state["result"]
except Exception as e:
total_duration = (datetime.now() - start_time).total_seconds()
logger.error(f"Pipeline failed: {str(e)}")
if return_metadata:
error_metadata = {
"session_id": session_id,
"total_duration": total_duration,
"pipeline_success": False,
"error": str(e)
}
return {"result": f"Error: {str(e)}", "metadata": error_metadata}
else:
return f"Error: {str(e)}"
def process_query_gradio(query: str, reports_filter: str = "", sources_filter: str = "",
subtype_filter: str = "", year_filter: str = "") -> str:
return process_query_core(
query=query,
reports_filter=reports_filter,
sources_filter=sources_filter,
subtype_filter=subtype_filter,
year_filter=year_filter,
session_id=f"gradio_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
return_metadata=False
)
def chatui_adapter(data) -> str:
try:
# Handle both dict and Pydantic model input
if hasattr(data, 'text'):
text = data.text
elif isinstance(data, dict) and 'text' in data:
text = data['text']
else:
logger.error(f"Unexpected input structure: {data}")
return "Error: Invalid input format. Expected 'text' field."
result = process_query_core(
query=text,
session_id=f"chatui_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
return_metadata=False
)
return result
except Exception as e:
logger.error(f"ChatUI error: {str(e)}")
return f"Error: {str(e)}"
def process_query_langserve(input_data: ChatFedInput) -> ChatFedOutput:
result = process_query_core(
query=input_data["query"],
reports_filter=input_data.get("reports_filter", ""),
sources_filter=input_data.get("sources_filter", ""),
subtype_filter=input_data.get("subtype_filter", ""),
year_filter=input_data.get("year_filter", ""),
session_id=input_data.get("session_id"),
user_id=input_data.get("user_id"),
return_metadata=True
)
return ChatFedOutput(result=result["result"], metadata=result["metadata"])
# This is not working currently... Problematic because HF doesn't allow > 1 port open at the same time
def create_gradio_interface():
with gr.Blocks(title="ChatFed Orchestrator") as demo:
gr.Markdown("# ChatFed Orchestrator")
gr.Markdown("MCP endpoints available at `/gradio_api/mcp/sse`")
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Query", lines=2, placeholder="Enter your question...")
reports_filter_input = gr.Textbox(label="Reports Filter", placeholder="e.g., annual_reports")
sources_filter_input = gr.Textbox(label="Sources Filter", placeholder="e.g., internal")
subtype_filter_input = gr.Textbox(label="Subtype Filter", placeholder="e.g., financial")
year_filter_input = gr.Textbox(label="Year Filter", placeholder="e.g., 2024")
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output = gr.Textbox(label="Response", lines=10)
submit_btn.click(
fn=process_query_gradio,
inputs=[query_input, reports_filter_input, sources_filter_input, subtype_filter_input, year_filter_input],
outputs=output
)
return demo
@asynccontextmanager
async def lifespan(app: FastAPI):
logger.info("ChatFed Orchestrator starting up...")
yield
logger.info("Orchestrator shutting down...")
app = FastAPI(
title="ChatFed Orchestrator",
version="1.0.0",
lifespan=lifespan,
docs_url=None,
redoc_url=None
)
@app.get("/health")
async def health_check():
return {"status": "healthy"}
@app.get("/")
async def root():
return {
"message": "ChatFed Orchestrator API",
"endpoints": {
"health": "/health",
"chatfed": "/chatfed",
"chatfed-ui-stream": "/chatfed-ui-stream"
}
}
# LangServe routes (these are the main endpoints)
add_routes(
app,
RunnableLambda(process_query_langserve),
path="/chatfed",
input_type=ChatFedInput,
output_type=ChatFedOutput
)
add_routes(
app,
RunnableLambda(chatui_adapter),
path="/chatfed-ui-stream",
input_type=ChatUIInput,
output_type=str,
enable_feedback_endpoint=True,
enable_public_trace_link_endpoint=True,
)
def run_gradio_server():
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7861,
mcp_server=True,
show_error=True,
share=False,
quiet=True
)
if __name__ == "__main__":
gradio_thread = threading.Thread(target=run_gradio_server, daemon=True)
gradio_thread.start()
logger.info("Gradio MCP server started on port 7861")
host = os.getenv("HOST", "0.0.0.0")
port = int(os.getenv("PORT", "7860"))
logger.info(f"Starting FastAPI server on {host}:{port}")
uvicorn.run(app, host=host, port=port, log_level="info", access_log=True) |