Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,138 Bytes
3ab64ac 2d17ff2 22b7264 68cba5e 2d17ff2 68cba5e 3ab64ac 400e803 3ab64ac 8edd3eb 7ebdd15 8edd3eb 7ebdd15 24a7885 22b7264 68cba5e 22b7264 a6f29ed 24a7885 22b7264 e491ae1 4af9e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import glob
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter
from transformers import AutoTokenizer
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Qdrant
#from dotenv import load_dotenv
#load_dotenv()
#HF_token = os.environ["HF_TOKEN"]
path_to_data = "./data/"
def process_pdf():
files = {'ABC':'./data/MWTS2021.pdf',
'XYZ':'./data/MWTS2022.pdf'}
docs = {}
for file,value in files.items():
try:
docs[file] = PyMuPDFLoader(value).load()
except Exception as e:
print("Exception: ", e)
# text splitter based on the tokenizer of a model of your choosing
# to make texts fit exactly a transformer's context window size
# langchain text splitters: https://python.langchain.com/docs/modules/data_connection/document_transformers/
chunk_size = 256
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5"),
chunk_size=chunk_size,
chunk_overlap=int(chunk_size / 10),
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n"],
)
all_documents = {}
for file,value in docs.items():
doc_processed = text_splitter.split_documents(value)
for doc in doc_processed:
doc.metadata["source"] = file
all_documents[file] = doc_processed
print(all_documents.keys())
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
qdrant_collections = {}
for file,value in all_documents.items():
print("emebddings for:",file)
qdrant_collections[file] = Qdrant.from_documents(
value,
embeddings,
location=":memory:",
collection_name=file,
)
print("done")
return qdrant_collections |