Spaces:
GIZ
/
Running on CPU Upgrade

File size: 25,236 Bytes
9f55059
a4bf4e8
 
4a20529
 
 
cc5c327
9f55059
7d78a3b
cc5c327
99ae6d0
a4bf4e8
9f55059
99ae6d0
 
 
 
 
 
 
 
 
 
 
 
 
7d78a3b
 
 
 
 
99ae6d0
 
 
49a314a
63da636
ed0fd13
43cd965
 
 
9f55059
 
 
 
 
 
 
43cd965
99ae6d0
 
ed0fd13
49a314a
63da636
cc5c327
9f55059
ed0fd13
9f55059
ed0fd13
 
9f55059
 
 
 
 
 
 
 
 
 
 
ed0fd13
 
99ae6d0
63da636
4a20529
63da636
 
 
 
9f55059
 
63da636
2663a97
63da636
cc5c327
9f55059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5c327
7d78a3b
9f55059
7d78a3b
9f55059
 
 
1d3978a
43cd965
1d3978a
99ae6d0
 
 
 
9f55059
99ae6d0
9f55059
7d78a3b
 
9f55059
 
 
 
7d78a3b
9f55059
 
99ae6d0
1d3978a
 
 
9f55059
 
 
1d3978a
 
99ae6d0
a4bf4e8
1d3978a
a4bf4e8
1d3978a
 
9f55059
1d3978a
2bccbcb
7d78a3b
 
1d3978a
99ae6d0
 
 
9f55059
 
 
7d78a3b
9f55059
7d78a3b
 
 
 
 
 
 
 
 
 
9f55059
 
 
 
 
 
 
 
 
 
7d78a3b
 
 
43cd965
7d78a3b
99ae6d0
 
 
 
 
 
 
 
 
d7ce857
 
7d78a3b
 
99ae6d0
 
9f55059
 
2663a97
d7ce857
7d78a3b
43cd965
7d78a3b
 
 
 
 
9f55059
7d78a3b
2663a97
9f55059
 
7d78a3b
 
 
 
 
 
2663a97
 
99ae6d0
 
 
a4bf4e8
99ae6d0
9f55059
 
7d78a3b
9f55059
 
 
 
ed0fd13
 
43cd965
 
 
d7ce857
 
 
 
9f55059
 
 
 
 
 
 
 
d7ce857
7d78a3b
 
 
 
 
ed0fd13
 
 
 
7d78a3b
9f55059
 
 
7d78a3b
9f55059
 
 
7d78a3b
 
9f55059
7d78a3b
9f55059
 
d7ce857
9f55059
 
2663a97
ed0fd13
 
 
 
9f55059
 
 
ed0fd13
7d78a3b
9f55059
 
 
ed0fd13
 
2663a97
 
3a88079
 
 
 
d7ce857
9f55059
99ae6d0
d7ce857
dd2ab07
2663a97
9f55059
 
 
 
 
 
d7ce857
2663a97
9f55059
dd2ab07
9f55059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd2ab07
9f55059
 
dd2ab07
9f55059
99ae6d0
9f55059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4bf4e8
9f55059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ae6d0
9f55059
fc3b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f55059
 
7d78a3b
9f55059
 
 
 
 
fc3b461
 
 
 
 
 
 
 
 
 
9f55059
7d78a3b
 
 
 
d7ce857
 
7d78a3b
9f55059
 
 
 
 
 
 
2663a97
9f55059
7d78a3b
43cd965
2663a97
43cd965
2663a97
9f55059
2663a97
 
 
 
fa8823d
9f55059
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
from haystack.nodes import TransformersQueryClassifier, Docs2Answers
from haystack.nodes import EmbeddingRetriever, FARMReader
from haystack.nodes.base import BaseComponent
from haystack.document_stores import InMemoryDocumentStore
from markdown import markdown
from annotated_text import annotation
from haystack.schema import Document
from typing import List, Text, Union
from typing_extensions import Literal
from utils.preprocessing import processingpipeline
from utils.streamlitcheck import check_streamlit
from haystack.pipelines import Pipeline
import pandas as pd
import logging
try:
    from termcolor import colored
except:
    pass
try:
    import streamlit as st    
except ImportError:
    logging.info("Streamlit not installed")


@st.cache(allow_output_mutation=True)
def loadQueryClassifier():
    """
    retuns the haystack query classifier model
    model = shahrukhx01/bert-mini-finetune-question-detection
    
    """
    query_classifier = TransformersQueryClassifier(model_name_or_path=
                            "shahrukhx01/bert-mini-finetune-question-detection")
    return query_classifier

class QueryCheck(BaseComponent):
    """
    Uses Query Classifier from Haystack, process the query based on query type.
    Ability to determine the statements is not so good, therefore the chances 
    statement also get modified. Ex: "List water related issues" will be 
    identified by the model as keywords, and therefore it be processed as "what 
    are the 'list all water related issues' related issues and discussions?". 
    This is one shortcoming but is igonred for now, as semantic search will not 
    get affected a lot, by this. If you want to pass keywords list and want to 
    do batch processing use. run_batch. Example: if you want to find relevant 
    passages for water, food security, poverty then querylist = ["water", "food 
    security","poverty"] and then execute QueryCheck.run_batch(queries = querylist)

    1. https://docs.haystack.deepset.ai/docs/query_classifier

    """

    outgoing_edges = 1

    def run(self, query:str):
        """
        mandatory method to use the custom node. Determines the query type, if 
        if the query is of type keyword/statement will modify it to make it more
        useful for sentence transoformers.

        Params
        --------
        query: query/statement/keywords in form of string

        Return
        ------
        output: dictionary, with key as identifier and value could be anything 
                we need to return. In this case the output contain key = 'query'.
        
        output_1: As there is only one outgoing edge, we pass 'output_1' string
        
        """
        query_classifier = loadQueryClassifier()
        result = query_classifier.run(query=query)

        if result[1] == "output_1":
            output = {"query":query,
                       "query_type": 'question/statement'}
        else:
            output = {"query": "what are the {} related issues and \
                        discussions?".format(query),
                      "query_type": 'statements/keyword'}
        logging.info(output)
        return output, "output_1"
    
    def run_batch(self, queries:List[str]):
        """
        running multiple queries in one go, howeevr need the queries to be passed
        as list of string. Example: if you want to find relevant passages for
        water, food security, poverty then querylist = ["water", "food security",
        "poverty"] and then execute QueryCheck.run_batch(queries = querylist)

        Params
        --------
        queries: queries/statements/keywords in form of string encapsulated 
                within List

        Return
        ------
        output: dictionary, with key as identifier and value could be anything 
                we need to return. In this case the output contain key = 'queries'.
        
        output_1: As there is only one outgoing edge, we pass 'output_1' string
        """
        query_classifier = loadQueryClassifier()
        query_list = []
        for query in queries:
            result = query_classifier.run(query=query)
            if result[1] == "output_1":
                query_list.append(query)
            else:
                query_list.append("what are the {} related issues and \
                    discussions?".format(query))
        output = {'queries':query_list}
        logging.info(output)
        return output, "output_1"


@st.cache(allow_output_mutation=True)
def runSemanticPreprocessingPipeline(file_path:str, file_name:str, 
                split_by: Literal["sentence", "word"] = 'sentence',
                split_length:int = 2, split_overlap:int = 0,
                split_respect_sentence_boundary:bool = False,
                remove_punc:bool = False)->List[Document]:
    """
    creates the pipeline and runs the preprocessing pipeline.

    Params
    ------------

    file_name: filename, in case of streamlit application use 
            st.session_state['filename']
    file_path: filepath, in case of streamlit application use 
            st.session_state['filepath']
    split_by: document splitting strategy either as word or sentence
    split_length: when synthetically creating the paragrpahs from document,
            it defines the length of paragraph.
    split_overlap: Number of words or sentences that overlap when creating the 
            paragraphs. This is done as one sentence or 'some words' make sense
            when  read in together with others. Therefore the overlap is used.
    split_respect_sentence_boundary: Used when using 'word' strategy for 
            splititng of text.
    remove_punc: to remove all Punctuation including ',' and '.' or not

    Return
    --------------
    List[Document]: When preprocessing pipeline is run, the output dictionary 
        has four objects. For the Haysatck implementation of semantic search we, 
        need to use the List of Haystack Document, which can be fetched by 
        key = 'documents' on output.

    """

    semantic_processing_pipeline = processingpipeline()

    output_semantic_pre = semantic_processing_pipeline.run(file_paths = file_path, 
                            params= {"FileConverter": {"file_path": file_path, \
                                        "file_name": file_name}, 
                                "UdfPreProcessor": {"remove_punc": remove_punc, \
                                            "split_by": split_by, \
                                            "split_length":split_length,\
                                            "split_overlap": split_overlap,
        "split_respect_sentence_boundary":split_respect_sentence_boundary}})

    return output_semantic_pre


@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},
                                        allow_output_mutation=True)
def loadRetriever(embedding_model:Text=None, embedding_model_format:Text = None, 
                 embedding_layer:int = None,  retriever_top_k:int = 10, 
                 max_seq_len:int=512, document_store:InMemoryDocumentStore=None):
    """
    Returns the Retriever model based on params provided.
    1. https://docs.haystack.deepset.ai/docs/retriever#embedding-retrieval-recommended
    2. https://www.sbert.net/examples/applications/semantic-search/README.html
    3. https://github.com/deepset-ai/haystack/blob/main/haystack/nodes/retriever/dense.py

    
    Params
    ---------
    embedding_model: Name of the model to be used for embedding. Check the links
            provided in documentation
    embedding_model_format: check the github link of Haystack provided in 
            documentation embedding_layer: check the github link of Haystack 
            provided in documentation retriever_top_k: Number of Top results to
            be returned by 
    retriever max_seq_len: everymodel has max seq len it can handle, check in 
            model card. Needed to hanlde the edge cases.
    document_store: InMemoryDocumentStore, write haystack Document list to 
            DocumentStore and pass the same to function call. Can be done using 
            createDocumentStore from utils.
    
    Return
    -------
    retriever: embedding model
    """
    logging.info("loading retriever")
    if document_store is None:
        logging.warning("Retriever initialization requires the DocumentStore")
        return
    
    retriever = EmbeddingRetriever(
                embedding_model=embedding_model,top_k = retriever_top_k,
                document_store = document_store,
                emb_extraction_layer=embedding_layer, scale_score =True,
                model_format=embedding_model_format, use_gpu = True, 
                max_seq_len = max_seq_len )
    if check_streamlit:
        st.session_state['retriever'] = retriever
    return retriever

@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},
                    allow_output_mutation=True)
def createDocumentStore(documents:List[Document], similarity:str = 'dot_product', 
                        embedding_dim:int = 768):
    """
    Creates the InMemory Document Store from haystack list of Documents.
    It is  mandatory component for Retriever to work in Haystack frame work.
    
    Params
    -------
    documents: List of haystack document. If using the preprocessing pipeline, 
            can be fetched key = 'documents; on output of preprocessing pipeline.
    similarity: scoring function, can be either 'cosine' or 'dot_product'
    embedding_dim: Document store has default value of embedding size = 768, and
            update_embeddings method of Docstore cannot infer the embedding size of 
            retiever automatically, therefore set this value as per the model card.
    
    Return
    -------
    document_store: InMemory Document Store object type.
    
    """
    document_store = InMemoryDocumentStore(similarity = similarity, 
                                        embedding_dim = embedding_dim )
    document_store.write_documents(documents)
    
    return document_store


@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},
                                        allow_output_mutation=True)
def semanticSearchPipeline(documents:List[Document], embedding_model:Text =  None, 
                embedding_model_format:Text = None,embedding_layer:int = None,
                embedding_dim:int = 768,retriever_top_k:int = 10,
                reader_model:str =  None, reader_top_k:int = 10,
                max_seq_len:int =512,useQueryCheck = True, ):
    """
    creates the semantic search pipeline and document Store object from the
    list of haystack documents. The top_k for the Reader and Retirever are kept  
    same, so that all the results returned by Retriever are used, however the 
    context is extracted by Reader for each retrieved result. The querycheck is 
    added as node to process the query. This pipeline is suited for keyword search,
    and to some extent extractive QA purpose. The purpose of Reader is strictly to
    highlight the context for retrieved result and not for QA, however as stated
    it can work for QA too in limited sense.
    There are 4 variants of pipeline it can return
    1.QueryCheck > Retriever > Reader
    2.Retriever > Reader
    3.QueryCheck > Retriever > Docs2Answers : If reader is None, 
    then Doc2answer is used to keep the output of pipeline structurally same.
    4.Retriever > Docs2Answers 

    Links

    1. https://docs.haystack.deepset.ai/docs/retriever#embedding-retrieval-recommended
    2. https://www.sbert.net/examples/applications/semantic-search/README.html
    3. https://github.com/deepset-ai/haystack/blob/main/haystack/nodes/retriever/dense.py
    4. https://docs.haystack.deepset.ai/docs/reader


    Params
    ----------
    documents: list of Haystack Documents, returned by preprocessig pipeline.
    embedding_model: Name of the model to be used for embedding. Check the links
            provided in documentation
    embedding_model_format: check the github link of Haystack provided in 
            documentation
    embedding_layer: check the github link of Haystack provided in documentation
    embedding_dim: Document store has default value of embedding size = 768, and
            update_embeddings method of Docstore cannot infer the embedding size of 
            retiever automatically, therefore set this value as per the model card.
    retriever_top_k: Number of Top results to be returned by retriever
    reader_model: Name of the model to be used for Reader node in hasyatck 
            Pipeline. Check the links provided in documentation
    reader_top_k: Reader will use retrieved results to further find better matches.
            As purpose here is to use reader to extract context, the value is
            same as retriever_top_k.
    max_seq_len:everymodel has max seq len it can handle, check in model card. 
            Needed to hanlde the edge cases
    useQueryCheck: Whether to use the querycheck which modifies the query or not.


    Return
    ---------
    semanticsearch_pipeline: Haystack Pipeline object, with all the necessary 
            nodes [QueryCheck, Retriever, Reader/Docs2Answer]. If reader is None, 
            then Doc2answer is used to keep the output of pipeline structurally 
            same.

    document_store: As retriever can work only with Haystack Document Store, the
            list of document returned by preprocessing pipeline are fed into to
            get InMemmoryDocumentStore object type, with retriever updating the 
            embeddings of each paragraph in document store.

    """
    document_store = createDocumentStore(documents=documents, 
                                    embedding_dim=embedding_dim)                  
    retriever = loadRetriever(embedding_model = embedding_model,
                    embedding_model_format=embedding_model_format,
                    embedding_layer=embedding_layer,  
                    retriever_top_k= retriever_top_k, 
                    document_store = document_store,
                    max_seq_len=max_seq_len)           
    document_store.update_embeddings(retriever)
    semantic_search_pipeline = Pipeline()
    if useQueryCheck and reader_model:
        querycheck = QueryCheck()
        reader = FARMReader(model_name_or_path=reader_model,
                    top_k = reader_top_k, use_gpu=True)
        semantic_search_pipeline.add_node(component = querycheck, 
                    name = "QueryCheck",inputs = ["Query"])
        semantic_search_pipeline.add_node(component = retriever, 
                    name = "EmbeddingRetriever",inputs = ["QueryCheck.output_1"])
        semantic_search_pipeline.add_node(component = reader, name = "FARMReader",
                                        inputs= ["EmbeddingRetriever"])

    elif reader_model :
        reader = FARMReader(model_name_or_path=reader_model,
                    top_k = reader_top_k, use_gpu=True)
        semantic_search_pipeline.add_node(component = retriever, 
                    name = "EmbeddingRetriever",inputs = ["Query"])
        semantic_search_pipeline.add_node(component = reader,
                    name = "FARMReader",inputs= ["EmbeddingRetriever"])
    elif useQueryCheck and not reader_model:
        querycheck = QueryCheck()
        docs2answers = Docs2Answers() 
        semantic_search_pipeline.add_node(component = querycheck,
                        name = "QueryCheck",inputs = ["Query"])
        semantic_search_pipeline.add_node(component = retriever,
                        name = "EmbeddingRetriever",inputs = ["QueryCheck.output_1"])
        semantic_search_pipeline.add_node(component = docs2answers,
                        name = "Docs2Answers",inputs= ["EmbeddingRetriever"])
    elif not useQueryCheck and not reader_model:
        docs2answers = Docs2Answers()
        semantic_search_pipeline.add_node(component = retriever, 
                        name = "EmbeddingRetriever",inputs = ["Query"])
        semantic_search_pipeline.add_node(component = docs2answers, 
                        name = "Docs2Answers",inputs= ["EmbeddingRetriever"])            
        
    logging.info(semantic_search_pipeline.components)
    return semantic_search_pipeline, document_store

def runSemanticPipeline(pipeline:Pipeline, queries:Union[list,str])->dict:
    """
    will use the haystack run or run_batch based on if single query is passed 
    as string or multiple queries as List[str]
    
    Params
    -------
    pipeline: haystack pipeline, this is same as returned by semanticSearchPipeline
            from utils.semanticsearch

    queries: Either a single query or list of queries.

    Return
    -------
    results: Dict containing answers and documents as key and their respective 
            values

    """

    if type(queries) == list:
        results = pipeline.run_batch(queries=queries)
    elif type(queries) == str:
        results = pipeline.run(query=queries)
    else:
        logging.info("Please check the input type for the queries")
        return

    return results

def process_query_output(results:dict)->pd.DataFrame:
    """
    Returns the dataframe with necessary information like including
    ['query','answer','answer_offset','context_offset','context','content',
    'reader_score','retriever_score','id',]. This is designed for output given 
    by semantic search pipeline with single query and final node as reader.
    The output of pipeline having Docs2Answers as final node or multiple queries
    need to be handled separately. In these other cases, use process_semantic_output
    from utils.semantic_search which uses this function internally to make one
    combined dataframe.
    
    Params
    ---------
    results: this dictionary should have key,values with 
            keys = [query,answers,documents], however answers is optional.
            in case of [Doc2Answers as final node], process_semantic_output 
            doesnt return answers thereby setting all values contained in 
            answers to 'None'
        
    Return
    --------
    df: dataframe with all the columns mentioned in function description.
    
    """
    query_text = results['query']
    if 'answers' in results.keys():
        answer_dict = {}

        for answer in results['answers']:
            answer_dict[answer.document_id] = answer.to_dict()
    else:
        answer_dict = {}
    docs = results['documents']
    df = pd.DataFrame(columns=['query','answer','answer_offset','context_offset',
                            'context','content','reader_score','retriever_score',
                            'id'])
    for doc in docs:
        row_list = {}
        row_list['query'] = query_text
        row_list['retriever_score'] = doc.score
        row_list['id'] = doc.id
        row_list['content'] = doc.content
        if doc.id in answer_dict.keys():
            row_list['answer'] = answer_dict[doc.id]['answer']
            row_list['context'] = answer_dict[doc.id]['context']
            row_list['reader_score'] = answer_dict[doc.id]['score']
            answer_offset = answer_dict[doc.id]['offsets_in_document'][0]
            row_list['answer_offset'] = [answer_offset['start'],answer_offset['end']]
            start_idx = doc.content.find(row_list['context'])
            end_idx = start_idx + len(row_list['context'])
            row_list['context_offset'] = [start_idx, end_idx]
        else:
            row_list['answer'] = None
            row_list['context'] = None
            row_list['reader_score'] = None
            row_list['answer_offset'] = None
            row_list['context_offset'] = None
        df_dictionary = pd.DataFrame([row_list])
        df = pd.concat([df, df_dictionary], ignore_index=True)
    
    return df

def process_semantic_output(results):
    """
    Returns the dataframe with necessary information like including
    ['query','answer','answer_offset','context_offset','context','content',
    'reader_score','retriever_score','id',]. Distingushes if its single query or
    multi queries by reading the pipeline output dictionary keys.
    Uses the process_query_output to get the dataframe for each query and create
    one concataneted dataframe. In case f Docs2Answers as final node, deletes 
    the answers part. See documentations of process_query_output.
    
    Params
    ---------
    results: raw output of runSemanticPipeline. 
        
    Return
    --------
    df: dataframe with all the columns mentioned in function description.
    
    """
    output = {}
    if 'query' in results.keys():
        output['query'] = results['query']
        output['documents'] = results['documents']
        if results['node_id'] == 'Docs2Answers':
            pass
        else:
            output['answers'] = results['answers']
        df = process_query_output(output)
        return df
    if 'queries' in results.keys():
        df = pd.DataFrame(columns=['query','answer','answer_offset',
                                   'context_offset','context','content',
                                   'reader_score','retriever_score','id'])
        for query,answers,documents in zip(results['queries'],
                    results['answers'],results['documents']):
            output = {}
            output['query'] = query
            output['documents'] = documents
            if results['node_id'] == 'Docs2Answers':
                    pass
            else:
                output['answers'] = answers
            
            temp = process_query_output(output)
            df = pd.concat([df, temp], ignore_index=True)

            
    return df

def semanticsearchAnnotator(matches:List[List[int]], document:Text):
    """
    Annotates the text in the document defined by list of [start index, end index]
    Example: "How are you today", if document type is text, matches = [[0,3]]
    will give answer = "How", however in case we used the spacy matcher then the
    matches = [[0,3]] will give answer = "How are you". However if spacy is used
    to find "How" then the matches = [[0,1]] for the string defined above.

    """
    start = 0
    annotated_text = ""
    for match in matches:
        start_idx = match[0]
        end_idx = match[1]
        if check_streamlit():
            annotated_text = (annotated_text + document[start:start_idx]
                            + str(annotation(body=document[start_idx:end_idx],
                            label="Context", background="#964448", color='#ffffff')))
        else:
            annotated_text = (annotated_text + document[start:start_idx]
                            + colored(document[start_idx:end_idx],
                          "green", attrs = ['bold']))
        start = end_idx
    
    annotated_text = annotated_text + document[end_idx:]

    if check_streamlit():

        st.write(
                markdown(annotated_text),
                unsafe_allow_html=True,
            )
    else:
        print(annotated_text)
    

def semantic_keywordsearch(query:Text,documents:List[Document],
                embedding_model:Text, 
                embedding_model_format:Text, 
                embedding_layer:int,  reader_model:str,
                retriever_top_k:int = 10, reader_top_k:int = 10,
                return_results:bool = False, embedding_dim:int = 768,
                max_seq_len:int = 512,
                sort_by:Literal["retriever", "reader"] = 'retriever'):
    """
    Performs the Semantic search on the List of haystack documents which is 
    returned by preprocessing Pipeline.

    Params
    -------
    query: Keywords that need to be searche in documents.
    documents: List fo Haystack documents returned by preprocessing pipeline.
    
    """
    semanticsearch_pipeline, doc_store = semanticSearchPipeline(documents = documents,
                        embedding_model= embedding_model, 
                        embedding_layer= embedding_layer,
                        embedding_model_format= embedding_model_format,
                        reader_model= reader_model, retriever_top_k= retriever_top_k,
                        reader_top_k= reader_top_k, embedding_dim=embedding_dim,
                        max_seq_len=max_seq_len)

    raw_output = runSemanticPipeline(semanticsearch_pipeline,query)
    results_df = process_semantic_output(raw_output)
    if sort_by == 'retriever':
        results_df = results_df.sort_values(by=['retriever_score'], ascending=False)
    else:
        results_df = results_df.sort_values(by=['reader_score'], ascending=False)

    if return_results:
        return results_df
    else:
        if check_streamlit:
            st.markdown("##### Top few semantic search results #####")
        else:
            print("Top few semantic search results")
        for i in range(len(results_df)):
            if check_streamlit:
                st.write("Result {}".format(i+1))
            else:
                print("Result {}".format(i+1))
            semanticsearchAnnotator([results_df.loc[i]['context_offset']],
                        results_df.loc[i]['content'] )