File size: 4,247 Bytes
22b8e0b 72e4dad 22b8e0b 2caced7 22b8e0b 8c4c590 72e4dad 4a6159c 22b8e0b 72e4dad 22b8e0b 72e4dad 22b8e0b 72e4dad 22b8e0b 72e4dad 22b8e0b 72e4dad 4a6159c 72e4dad 22b8e0b 4a6159c 22b8e0b 72e4dad 2d65499 22b8e0b a48c117 22b8e0b a48c117 1346116 a48c117 593bc97 8c4c590 72e4dad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
# set path
import glob, os, sys;
sys.path.append('../udfPreprocess')
#import helper
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
from udfPreprocess.sdg_classifier import sdg_classification
from udfPreprocess.sdg_classifier import runSDGPreprocessingPipeline
import configparser
import tempfile
import sqlite3
import logging
logger = logging.getLogger(__name__)
def app():
with st.container():
st.markdown("<h1 style='text-align: center; color: black;'> SDSN x GIZ Policy Action Tracking v0.1</h1>", unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
The *Analyse Policy Document* app is an easy-to-use interface built in Streamlit for analyzing policy documents with respect to SDG Classification for the paragraphs/texts in the document - developed by GIZ Data and the Sustainable Development Solution Network. \n
""")
st.markdown("")
with st.container():
if 'filepath' in st.session_state:
paraList = runSDGPreprocessingPipeline()
with st.spinner("Running SDG"):
df, x = sdg_classification(paraList)
plt.rcParams['font.size'] = 25
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
# plot
fig, ax = plt.subplots()
ax.pie(x, colors=colors, radius=2, center=(4, 4),
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
st.markdown("#### Anything related to SDGs? ####")
c4, c5, c6 = st.columns([2, 2, 2])
with c5:
st.pyplot(fig)
c7, c8, c9 = st.columns([1, 10, 1])
with c8:
st.table(df)
# 1. Keyword heatmap \n
# 2. SDG Classification for the paragraphs/texts in the document
#
# with st.container():
# if 'docs' in st.session_state:
# docs = st.session_state['docs']
# docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
# # paraList = st.session_state['paraList']
# logging.info("keybert")
# with st.spinner("Running Key bert"):
# kw_model = load_keyBert()
# keywords = kw_model.extract_keywords(
# all_text,
# keyphrase_ngram_range=(1, 3),
# use_mmr=True,
# stop_words="english",
# top_n=10,
# diversity=0.7,
# )
# st.markdown("## 🎈 What is my document about?")
# df = (
# DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
# .sort_values(by="Relevancy", ascending=False)
# .reset_index(drop=True)
# )
# df1 = (
# DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
# .sort_values(by="Relevancy", ascending=False)
# .reset_index(drop=True)
# )
# df.index += 1
# # Add styling
# cmGreen = sns.light_palette("green", as_cmap=True)
# cmRed = sns.light_palette("red", as_cmap=True)
# df = df.style.background_gradient(
# cmap=cmGreen,
# subset=[
# "Relevancy",
# ],
# )
# c1, c2, c3 = st.columns([1, 3, 1])
# format_dictionary = {
# "Relevancy": "{:.1%}",
# }
# df = df.format(format_dictionary)
# with c2:
#
# st.table(df) |