File size: 6,916 Bytes
e7334c8 603e63e e7334c8 59822ae 579e65b e7334c8 59822ae e7334c8 579e65b e7334c8 603e63e e7334c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os, shutil
import numpy as np
from PIL import Image
from typing import Literal, Any, Union, Generic, List
from pydantic import BaseModel
from sam2.build_sam import build_sam2, build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.utils.misc import variant_to_config_mapping
from sam2.utils.visualization import show_masks
from ffmpeg_extractor import extract_frames, logger
from toolbox.vid_utils import VidInfo
from toolbox.mask_encoding import b64_mask_encode
variant_checkpoints_mapping = {
"tiny": "checkpoints/sam2_hiera_tiny.pt",
"small": "checkpoints/sam2_hiera_small.pt",
"base_plus": "checkpoints/sam2_hiera_base_plus.pt",
"large": "checkpoints/sam2_hiera_large.pt",
}
class bbox_xyxy(BaseModel):
x0: Union[int, float]
y0: Union[int, float]
x1: Union[int, float]
y1: Union[int, float]
class point_xy(BaseModel):
x: Union[int, float]
y: Union[int, float]
def mask_to_xyxy(mask: np.ndarray) -> tuple:
"""Convert a binary mask of shape (h, w) to
xyxy bounding box format (top-left and bottom-right coordinates).
"""
ys, xs = np.where(mask)
if len(xs) == 0 or len(ys) == 0:
logger.warning("mask_to_xyxy: No object found in the mask")
return None
x_min = np.min(xs)
y_min = np.min(ys)
x_max = np.max(xs)
y_max = np.max(ys)
xyxy = (x_min, y_min, x_max, y_max)
xyxy = tuple([int(i) for i in xyxy])
return xyxy
def load_sam_image_model(
# variant: Literal[*variant_checkpoints_mapping.keys()],
variant: Literal["tiny", "small", "base_plus", "large"],
device: str = "cpu",
auto_mask_gen: bool = False,
) -> SAM2ImagePredictor:
model = build_sam2(
config_file=variant_to_config_mapping[variant],
ckpt_path=variant_checkpoints_mapping[variant],
device=device,
)
return (
SAM2AutomaticMaskGenerator(model)
if auto_mask_gen
else SAM2ImagePredictor(sam_model=model)
)
def load_sam_video_model(
variant: Literal["tiny", "small", "base_plus", "large"] = "small",
device: str = "cpu",
) -> Any:
return build_sam2_video_predictor(
config_file=variant_to_config_mapping[variant],
ckpt_path=variant_checkpoints_mapping[variant],
device=device,
)
def run_sam_im_inference(
model: Any,
image: Image.Image,
points: Union[List[point_xy], List[dict]] = [],
point_labels: List[int] = [],
bboxes: Union[List[bbox_xyxy], List[dict]] = [],
get_pil_mask: bool = False,
b64_encode_mask: bool = False,
):
"""returns a list of np masks, each with the shape (h,w) and dtype uint8"""
assert (
points or bboxes
), f"SAM2 Image Inference must have either bounding boxes or points. Neither were provided."
if points:
assert len(points) == len(
point_labels
), f"{len(points)} points provided but {len(point_labels)} labels given."
# determine multimask_output
has_multi = False
if points and bboxes:
has_multi = True
elif points and len(list(set(point_labels))) > 1:
has_multi = True
elif bboxes and len(bboxes) > 1:
has_multi = True
# parse provided bboxes
bboxes = (
[bbox_xyxy(**bbox) if isinstance(bbox, dict) else bbox for bbox in bboxes]
if bboxes
else []
)
points = (
[point_xy(**p) if isinstance(p, dict) else p for p in points] if points else []
)
# setup inference
image = np.array(image.convert("RGB"))
model.set_image(image)
box_coords = (
np.array([[b.x0, b.y0, b.x1, b.y1] for b in bboxes]) if bboxes else None
)
point_coords = np.array([[p.x, p.y] for p in points]) if points else None
point_labels = np.array(point_labels) if point_labels else None
masks, scores, _ = model.predict(
box=box_coords,
point_coords=point_coords,
point_labels=point_labels,
multimask_output=has_multi,
)
# mask here is of shape (X, h, w) of np array, X = number of masks
if get_pil_mask:
return show_masks(image, masks, scores=None, display_image=False)
else:
output_masks = []
for i, mask in enumerate(masks):
if mask.ndim > 2: # shape (3, h, w)
mask = np.transpose(mask, (1, 2, 0)) # shape (h,w,3)
mask = Image.fromarray((mask * 255).astype(np.uint8)).convert("L")
output_masks.append(np.array(mask))
else:
output_masks.append(mask.squeeze().astype(np.uint8))
return (
[b64_mask_encode(m).decode("ascii") for m in output_masks]
if b64_encode_mask
else output_masks
)
def run_sam_video_inference(
model: Any,
video_path: str,
masks: np.ndarray,
device: str = "cpu",
sample_fps: int = None,
every_x: int = None,
do_tidy_up: bool = False,
drop_mask: bool = True,
async_frame_load: bool = False,
ref_frame_idx: int = 0,
):
# put video frames into directory
# TODO:
# change frame size
# async frame load
l_frames_fp = extract_frames(
video_path,
fps=sample_fps,
every_x=every_x,
overwrite=True,
im_name_pattern="%05d.jpg",
)
vframes_dir = os.path.dirname(l_frames_fp[0])
vinfo = VidInfo(video_path)
w = vinfo["frame_width"]
h = vinfo["frame_height"]
inference_state = model.init_state(
video_path=vframes_dir, device=device, async_loading_frames=async_frame_load
)
for i, mask in enumerate(masks):
model.add_new_mask(
inference_state=inference_state,
frame_idx=ref_frame_idx,
obj_id=i,
mask=mask,
)
masks_generator = model.propagate_in_video(inference_state)
detections = []
for i, tracker_ids, mask_logits in masks_generator:
masks = (mask_logits > 0.0).cpu().numpy().astype(np.uint8)
for id, mask in zip(tracker_ids, masks):
mask = mask.squeeze().astype(np.uint8)
xyxy = mask_to_xyxy(mask)
if not xyxy: # mask is empty
logger.debug(f"track_id {id} is missing mask at frame {i}")
continue
x0, y0, x1, y1 = xyxy
det = { # miro's detections format for videos
"frame": i,
"track_id": id,
"x": x0 / w,
"y": y0 / h,
"w": (x1 - x0) / w,
"h": (y1 - y0) / h,
"conf": 1,
}
if not drop_mask:
det["mask_b64"] = b64_mask_encode(mask).decode("ascii")
detections.append(det)
if do_tidy_up:
# remove vframes_dir
shutil.rmtree(vframes_dir)
return detections
|