File size: 4,446 Bytes
a85e64f
5853376
 
 
84bc6b5
a85e64f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5853376
a85e64f
b83acf4
7cb0e99
b83acf4
5853376
 
fa34b93
5853376
 
 
a2db704
d52395d
 
5853376
 
a2db704
5853376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d321f27
3ac8916
5853376
 
 
 
 
 
 
 
 
d321f27
 
5853376
 
 
 
 
 
 
3ac8916
 
5853376
 
9c6a4cd
 
 
0c997e3
9984749
 
 
3f1c768
 
 
 
9984749
28e8ad7
 
9984749
0b9d3b0
5a0272f
28e8ad7
3ac8916
d52c181
5a0272f
28e8ad7
 
 
5d9a9d5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import base64

color_step = st.slider('color_step', value=10, min_value=1, max_value=179, step=1)

#duration of each frame of the gif in milliseconds 
duration_parameter = st.slider('duration_parameter aka duration of each frame of the gif in milliseconds', value=10, min_value=1, max_value=2000, step=10)

#Loop parameter = number of times gif loops. 0 = loops infinitely. 
loop_parameter = st.slider('Loop parameter aka number of times gif loops', value=0, min_value=0, max_value=10, step=1)


if color_step == 0:
  my_hue_list = [0]
else:
  my_hue_list = list( range(0, 180, color_step) ) #Color step basically gives step range of this list, ie if color_step = 2 then it is [0,2,4,6,....,178]



user_image_object = st.file_uploader("upload your image", type=['png', 'jpg'], accept_multiple_files=False)

if user_image_object is not None:
  st.image(user_image_object )
  
  
  user_image_name = "input_image.png"
  
  #re-encode for streamlit interface
  #streamlit uploader encodes as a pillow img so we want to save to open in cv2 (converting directly is a pain)
  input_image = Image.open( user_image_object )
  input_image.save(user_image_name )

  # load image with alpha channel
  img = cv2.imread( user_image_name , cv2.IMREAD_UNCHANGED)
  
  # extract alpha channel  
  #alpha = img[:,:,3]
  
  # extract bgr channels
  bgr = img[:,:,0:3]
  
  # convert to HSV
  hsv = cv2.cvtColor(bgr, cv2.COLOR_BGR2HSV)
  #h = hsv[:,:,0]
  #s = hsv[:,:,1]
  #v = hsv[:,:,2]
  h,s,v = cv2.split(hsv)
  
  
  if color_step == 0:
    my_hue_list = [0]
  else:
    my_hue_list = list( range(0, 180, color_step) ) #Color step basically gives step range of this list, ie if color_step = 2 then it is [0,2,4,6,....,178]
  #180 at end means highest it can go is 179 (same as hue param )
  #including 0 makes original image part of the outputs/gif 
  
  #H,S,V = Hue , Saturation, Value (ie color value) parameters
  #Hue has range [0,179] , Saturation [0,255] , Value [0,255]
  
  img_array = []
  output_filename_array = []
  for i in my_hue_list:
    # modify hue channel by adding difference and modulo 180 (modulo because hue parameter only goes up to index 180, shouldn't exceed that )
    hnew = np.mod(h + i, 180).astype(np.uint8)   #<<<<<<<<<<<<<<<< where the iter comes in 
  
    # recombine channels
    hsv_new = cv2.merge([hnew,s,v])
  
    # convert back to bgr
    bgr_new = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR)
    
    img_array.append(bgr_new )
  
    # put alpha back into bgr_new
    #bgra = cv2.cvtColor(bgr_new, cv2.COLOR_BGR2BGRA)
    #bgra[:,:,3] = alpha
  
    # save output AS FILE LABELED BY ITERABLE 
    output_filename = 'output_bgr_new_' + str(i) +'.png'        #<<<<<<<<<<<<<<<< where the iter comes in 
    output_filename_array.append(output_filename)
    cv2.imwrite(output_filename, bgr_new)
  
  
  height, width, layers = bgr_new.shape
  size = (width,height)
  
  st.write("This algorithm creates a GIF from images by creating hue shifted aka different color images from your input images bases on the parameters you chose in the slider above. The current set of parameters yields this many images: \n   len(img_array) = ", len(img_array) , "   \n So you GIF  will be a composite of this many images changing color.")
  
  '''Show some demos: '''
  
  #Uncomment this if statement to show some sample images of the gif 
  #if len(img_array) > 7:
  #  for ii in [1, 4, 7]:
  #    st.image( img_array[ii] )
  
  #HuggingFaces Spaces can create a video vile ephemerally but doesn't actually save one that we can access. 
  #So to show the video/gif we save it as a file then open that file to show it in streamlit
  
  st.text("Generating GIF, may take a minute. You should see it appear on screen. ")
  
  #Create GIF
  img, *imgs = [Image.open(f) for f in output_filename_array]
  img.save(fp="output_gif.gif", format='GIF', append_images=imgs,
         save_all=True, duration=duration_parameter, loop=loop_parameter)
  
  
  #Show gif using this script to show gifs in streamlit https://discuss.streamlit.io/t/how-to-show-local-gif-image/3408/2
  """### gif from local file"""
  file_ = open("output_gif.gif", "rb")
  contents = file_.read()
  data_url = base64.b64encode(contents).decode("utf-8")
  file_.close()
  
  st.markdown(
      f'<img src="data:image/gif;base64,{data_url}" alt="output gif">',
      unsafe_allow_html=True,
  )