File size: 1,138 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch.nn as nn
import torch
import numpy as np

class PointEmbed(nn.Module):
    def __init__(self, hidden_dim=48):
        super().__init__()

        assert hidden_dim % 6 == 0

        self.embedding_dim = hidden_dim
        e = torch.pow(2, torch.arange(self.embedding_dim // 6)).float() * np.pi
        e = torch.stack([
            torch.cat([e, torch.zeros(self.embedding_dim // 6),
                       torch.zeros(self.embedding_dim // 6)]),
            torch.cat([torch.zeros(self.embedding_dim // 6), e,
                       torch.zeros(self.embedding_dim // 6)]),
            torch.cat([torch.zeros(self.embedding_dim // 6),
                       torch.zeros(self.embedding_dim // 6), e]),
        ])
        self.register_buffer('basis', e)  # 3 x 24


    @staticmethod
    def embed(input, basis):
        projections = torch.einsum(
            'bnd,de->bne', input, basis) # N,24
        embeddings = torch.cat([projections.sin(), projections.cos()], dim=2)
        return embeddings

    def forward(self, input):
        # input: B x N x 3
        embed = self.embed(input, self.basis)
        return embed