File size: 19,325 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import glob
import random

import yaml

import torch
from torch.utils import data

import numpy as np
import json

from PIL import Image

import h5py
import torch.distributed as dist
import open3d as o3d
o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
import pickle as p
import time
import cv2
from torchvision import transforms
import copy
from datasets.taxonomy import category_map_from_synthetic as category_ids
class Object_Occ(data.Dataset):
    def __init__(self, dataset_folder, split, categories=['03001627', "future_chair", 'ABO_chair'], transform=None,
                 sampling=True,
                 num_samples=4096, return_surface=True, surface_sampling=True, surface_size=2048, replica=16):

        self.pc_size = surface_size

        self.transform = transform
        self.num_samples = num_samples
        self.sampling = sampling
        self.split = split

        self.dataset_folder = dataset_folder
        self.return_surface = return_surface
        self.surface_sampling = surface_sampling

        self.dataset_folder = dataset_folder
        self.point_folder = os.path.join(self.dataset_folder, 'occ_data')
        self.mesh_folder = os.path.join(self.dataset_folder, 'other_data')

        if categories is None:
            categories = os.listdir(self.point_folder)
            categories = [c for c in categories if
                          os.path.isdir(os.path.join(self.point_folder, c)) and c.startswith('0')]
        categories.sort()

        print(categories)

        self.models = []
        for c_idx, c in enumerate(categories):
            subpath = os.path.join(self.point_folder, c)
            print(subpath)
            assert os.path.isdir(subpath)

            split_file = os.path.join(subpath, split + '.lst')
            with open(split_file, 'r') as f:
                models_c = f.readlines()
            models_c = [item.rstrip('\n') for item in models_c]

            for m in models_c[:]:
                if len(m)<=1:
                    continue
                if m.endswith('.npz'):
                    model_id = m[:-4]
                else:
                    model_id = m
                self.models.append({
                    'category': c, 'model': model_id
                })
        self.replica = replica

    def __getitem__(self, idx):
        if self.replica >= 1:
            idx = idx % len(self.models)
        else:
            random_segment = random.randint(0, int(1 / self.replica) - 1)
            idx = int(random_segment * self.replica * len(self.models) + idx)

        category = self.models[idx]['category']
        model = self.models[idx]['model']

        point_path = os.path.join(self.point_folder, category, model + '.npz')
        # print(point_path)
        try:
            start_t = time.time()
            with np.load(point_path) as data:
                vol_points = data['vol_points']
                vol_label = data['vol_label']
                near_points = data['near_points']
                near_label = data['near_label']
            end_t = time.time()
            # print("loading time %f"%(end_t-start_t))
        except Exception as e:
            print(e)
            print(point_path)

        with open(point_path.replace('.npz', '.npy'), 'rb') as f:
            scale = np.load(f).item()
        # scale=1.0

        if self.return_surface:
            pc_path = os.path.join(self.mesh_folder, category, '4_pointcloud', model + '.npz')
            with np.load(pc_path) as data:
                try:
                    surface = data['points'].astype(np.float32)
                except:
                    print(pc_path,"has problems")
                    raise AttributeError
                surface = surface * scale
            if self.surface_sampling:
                ind = np.random.default_rng().choice(surface.shape[0], self.pc_size, replace=False)
                surface = surface[ind]
            surface = torch.from_numpy(surface)

        if self.sampling:
            '''need to conduct label balancing'''
            vol_ind=np.random.default_rng().choice(vol_points.shape[0], self.num_samples,
                                                       replace=(vol_points.shape[0]<self.num_samples))
            near_ind=np.random.default_rng().choice(near_points.shape[0], self.num_samples,
                                                       replace=(near_points.shape[0]<self.num_samples))
            vol_points=vol_points[vol_ind]
            vol_label=vol_label[vol_ind]
            near_points=near_points[near_ind]
            near_label=near_label[near_ind]

        vol_points = torch.from_numpy(vol_points)
        vol_label = torch.from_numpy(vol_label).float()

        if self.split == 'train':
            near_points = torch.from_numpy(near_points)
            near_label = torch.from_numpy(near_label).float()

            points = torch.cat([vol_points, near_points], dim=0)
            labels = torch.cat([vol_label, near_label], dim=0)
        else:
            points = vol_points
            labels = vol_label

        tran_mat=np.eye(4)
        if self.transform:
            surface, points, _,_, tran_mat = self.transform(surface, points)

        data_dict = {
            "points": points,
            "labels": labels,
            "category_ids": category_ids[category],
            "model_id": model,
            "tran_mat":tran_mat,
            "category":category,
        }
        if self.return_surface:
            data_dict["surface"] = surface

        return data_dict

    def __len__(self):
        if self.split != 'train':
            return len(self.models)
        else:
            return int(len(self.models) * self.replica)

class Object_PartialPoints_MultiImg(data.Dataset):
    def __init__(self, dataset_folder, split, split_filename, categories=['03001627', 'future_chair', 'ABO_chair'],
                 transform=None, sampling=True, num_samples=4096,
                 return_surface=True, ret_sample=True,surface_sampling=True,
                 surface_size=20000,par_pc_size=2048, par_point_aug=None,par_prefix="aug7_",
                 load_proj_mat=False,load_image=False,load_org_img=False,max_img_length=5,load_triplane=True,replica=2,
                 eval_multiview=False,scene_id=None,num_objects=-1):

        self.surface_size = surface_size
        self.par_pc_size=par_pc_size
        self.transform = transform
        self.num_samples = num_samples
        self.sampling = sampling
        self.split = split
        self.par_point_aug=par_point_aug
        self.par_prefix=par_prefix

        self.dataset_folder = dataset_folder
        self.return_surface = return_surface
        self.ret_sample=ret_sample
        self.surface_sampling = surface_sampling
        self.load_proj_mat=load_proj_mat
        self.load_img=load_image
        self.load_org_img=load_org_img
        self.load_triplane=load_triplane
        self.max_img_length=max_img_length
        self.eval_multiview=eval_multiview

        self.dataset_folder = dataset_folder
        self.point_folder = os.path.join(self.dataset_folder, 'occ_data')
        self.mesh_folder = os.path.join(self.dataset_folder, 'other_data')

        if scene_id is not None:
            scene_model_map_path=os.path.join(self.dataset_folder,"modelid_in_sceneid.json")
            with open(scene_model_map_path,'r') as f:
                scene_model_map=json.load(f)
            valid_modelid=scene_model_map[scene_id]

        if categories is None:
            categories = os.listdir(self.point_folder)
            categories = [c for c in categories if
                          os.path.isdir(os.path.join(self.point_folder, c)) and c.startswith('0')]
        categories.sort()

        print(categories)
        self.models = []
        self.model_images_names = {}
        for c_idx, c in enumerate(categories):
            cat_count=0
            subpath = os.path.join(self.point_folder, c)
            print(subpath)
            assert os.path.isdir(subpath)

            split_file = os.path.join(subpath, split_filename)
            with open(split_file, 'r') as f:
                splits = json.load(f)
            for item in splits:
                # print(item)
                model_id = item['model_id']
                if scene_id is not None and model_id not in valid_modelid:
                    continue
                image_filenames = item['image_filenames']
                partial_filenames = item['partial_filenames']
                if len(image_filenames)==0 or len(partial_filenames)==0:
                    continue
                self.model_images_names[model_id] = image_filenames
                if split=="train":
                    self.models += [
                        {'category': c, 'model': model_id, "partial_filenames": partial_filenames,
                         "image_filenames": image_filenames}
                    ]
                else:
                    if self.eval_multiview:
                        for length in range(0,len(image_filenames)):
                            self.models+=[
                                 {'category': c, 'model': model_id, "partial_filenames": partial_filenames[0:1],
                                    "image_filenames": image_filenames[0:length+1]}
                            ]
                    self.models += [
                        {'category': c, 'model': model_id, "partial_filenames": partial_filenames[0:1],
                         "image_filenames": image_filenames}
                    ]
        if num_objects!=-1:
            indexes=np.linspace(0,len(self.models)-1,num=num_objects).astype(np.int32)
            self.models = [self.models[i] for i in indexes]

        self.replica = replica

    def load_samples(self,point_path):
        try:
            start_t = time.time()
            with np.load(point_path) as data:
                vol_points = data['vol_points']
                vol_label = data['vol_label']
                near_points = data['near_points']
                near_label = data['near_label']
            end_t = time.time()
            # print("reading time %f"%(end_t-start_t))
        except Exception as e:
            print(e)
            print(point_path)
        return vol_points,vol_label,near_points,near_label

    def load_surface(self,surface_path,scale):
        with np.load(surface_path) as data:
            surface = data['points'].astype(np.float32)
            surface = surface * scale
        if self.surface_sampling:
            ind = np.random.default_rng().choice(surface.shape[0], self.surface_size, replace=False)
            surface = surface[ind]
        surface = torch.from_numpy(surface).float()
        return surface

    def load_par_points(self,partial_path,scale):
        # print(partial_path)
        par_point_o3d = o3d.io.read_point_cloud(partial_path)
        par_points = np.asarray(par_point_o3d.points)
        par_points = par_points * scale
        replace = par_points.shape[0] < self.par_pc_size
        ind = np.random.default_rng().choice(par_points.shape[0], self.par_pc_size, replace=replace)
        par_points = par_points[ind]
        par_points = torch.from_numpy(par_points).float()
        return par_points

    def process_samples(self,vol_points,vol_label,near_points,near_label):
        if self.sampling:
            ind = np.random.default_rng().choice(vol_points.shape[0], self.num_samples, replace=False)
            vol_points = vol_points[ind]
            vol_label = vol_label[ind]

            ind = np.random.default_rng().choice(near_points.shape[0], self.num_samples, replace=False)
            near_points = near_points[ind]
            near_label = near_label[ind]
        vol_points = torch.from_numpy(vol_points)
        vol_label = torch.from_numpy(vol_label).float()
        if self.split == 'train':
            near_points = torch.from_numpy(near_points)
            near_label = torch.from_numpy(near_label).float()

            points = torch.cat([vol_points, near_points], dim=0)
            labels = torch.cat([vol_label, near_label], dim=0)
        else:
            ind = np.random.default_rng().choice(vol_points.shape[0], 100000, replace=False)
            points = vol_points[ind]
            labels = vol_label[ind]
        return points,labels

    def __getitem__(self, idx):
        if self.replica >= 1:
            idx = idx % len(self.models)
        else:
            random_segment = random.randint(0, int(1 / self.replica) - 1)
            idx = int(random_segment * self.replica * len(self.models) + idx)
        category = self.models[idx]['category']
        model = self.models[idx]['model']
        #image_filenames = self.model_images_names[model]
        image_filenames = self.models[idx]["image_filenames"]
        if self.split=="train":
            n_frames = np.random.randint(min(2,len(image_filenames)), min(len(image_filenames) + 1, self.max_img_length + 1))
            img_indexes = np.random.choice(len(image_filenames), n_frames,
                                           replace=(n_frames > len(image_filenames))).tolist()
        else:
            if self.eval_multiview:
                '''use all images'''
                n_frames=len(image_filenames)
                img_indexes=[i for i in range(n_frames)]
            else:
                n_frames = min(len(image_filenames),self.max_img_length)
                img_indexes=np.linspace(start=0,stop=len(image_filenames)-1,num=n_frames).astype(np.int32)

        partial_filenames = self.models[idx]['partial_filenames']
        par_index = np.random.choice(len(partial_filenames), 1)[0]
        partial_name = partial_filenames[par_index]

        vol_points,vol_label,near_points,near_label=None,None,None,None
        points,labels=None,None
        point_path = os.path.join(self.point_folder, category, model + '.npz')
        if self.ret_sample:
            vol_points,vol_label,near_points,near_label=self.load_samples(point_path)
            points,labels = self.process_samples(vol_points, vol_label, near_points,near_label)

        with open(point_path.replace('.npz', '.npy'), 'rb') as f:
            scale = np.load(f).item()

        surface=None
        pc_path = os.path.join(self.mesh_folder, category, '4_pointcloud', model + '.npz')
        if self.return_surface:
            surface=self.load_surface(pc_path,scale)

        partial_path = os.path.join(self.mesh_folder, category, "5_partial_points", model, partial_name)
        if self.par_point_aug is not None and random.random()<self.par_point_aug: #add augmentation
            par_aug_path=os.path.join(self.mesh_folder, category, "5_partial_points", model, self.par_prefix+partial_name)
            #print(par_aug_path,os.path.exists(par_aug_path))
            if os.path.exists(par_aug_path):
                partial_path=par_aug_path
            else:
                raise FileNotFoundError
        par_points=self.load_par_points(partial_path,scale)

        image_list=[]
        valid_frames=[]
        image_namelist=[]
        if self.load_img:
            for img_index in img_indexes:
                image_name=image_filenames[img_index]
                image_feat_path=os.path.join(self.mesh_folder,category,"7_img_features",model,image_name[:-4]+'.npz')
                image=np.load(image_feat_path)["img_features"]
                image_list.append(torch.from_numpy(image).float())
                valid_frames.append(True)
                image_namelist.append(image_name)
            while len(image_list)<self.max_img_length:
                image_list.append(torch.from_numpy(np.zeros(image_list[0].shape).astype(np.float32)).float())
                valid_frames.append(False)
        org_img_list=[]
        if self.load_org_img:
            for img_index in img_indexes:
                image_name = image_filenames[img_index]
                image_path = os.path.join(self.mesh_folder, category, "6_images", model,
                                               image_name)
                org_image = cv2.imread(image_path)
                org_image = cv2.resize(org_image,dsize=(224,224),interpolation=cv2.INTER_LINEAR)
                org_img_list.append(org_image)

        proj_mat=None
        proj_mat_list=[]
        if self.load_proj_mat:
            for img_index in img_indexes:
                image_name = image_filenames[img_index]
                proj_mat_path = os.path.join(self.mesh_folder, category, "8_proj_matrix", model, image_name[:-4]+".npy")
                proj_mat=np.load(proj_mat_path)
                proj_mat_list.append(proj_mat)
            while len(proj_mat_list)<self.max_img_length:
                proj_mat_list.append(np.eye(4))
        tran_mat=None
        if self.load_triplane:
            triplane_folder=os.path.join(self.mesh_folder,category,'9_triplane_kl25_64',model)
            triplane_list=os.listdir(triplane_folder)
            select_index=np.random.randint(0,len(triplane_list))
            triplane_path=os.path.join(triplane_folder,triplane_list[select_index])
            #triplane_path=os.path.join(triplane_folder,"triplane_feat_0.npz")
            triplane_content=np.load(triplane_path)
            triplane_mean,triplane_logvar,tran_mat=triplane_content['mean'],triplane_content['logvar'],triplane_content['tran_mat']
            tran_mat=torch.from_numpy(tran_mat).float()

        if self.transform:
            if not self.load_triplane:
                surface, points, par_points,proj_mat,tran_mat = self.transform(surface, points, par_points,proj_mat_list)
                tran_mat=torch.from_numpy(tran_mat).float()
            else:
                surface, points, par_points, proj_mat = self.transform(surface, points, par_points, proj_mat_list,tran_mat)

        category_id=category_ids[category]
        one_hot=torch.zeros((6)).float()
        one_hot[category_id]=1.0
        ret_dict = {
            "category_ids": category_ids[category],
            "category":category,
            "category_code":one_hot,
            "model_id": model,
            "partial_name": partial_name[:-4],
            "class_name": category,
        }
        if tran_mat is not None:
            ret_dict["tran_mat"]=tran_mat
        if self.ret_sample:
            ret_dict["points"]=points
            ret_dict["labels"]=labels
        if self.return_surface:
            ret_dict["surface"] = surface
        ret_dict["par_points"] = par_points
        if self.load_img:
            ret_dict["image"] = torch.stack(image_list,dim=0)
            ret_dict["valid_frames"]= torch.tensor(valid_frames).bool()
        if self.load_org_img:
            ret_dict["org_image"]=org_img_list
            ret_dict["image_namelist"]=image_namelist
        if self.load_proj_mat:
            ret_dict["proj_mat"]=torch.stack([torch.from_numpy(mat) for mat in proj_mat_list],dim=0)
        if self.load_triplane:
            ret_dict['triplane_mean']=torch.from_numpy(triplane_mean).float()
            ret_dict['triplane_logvar'] = torch.from_numpy(triplane_logvar).float()
        return ret_dict

    def __len__(self):
        if self.split != 'train':
            return len(self.models)
        else:
            return int(len(self.models) * self.replica)