File size: 2,783 Bytes
5d421f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from huggingface_hub import InferenceClient
from ttsmms import download, TTS
from langdetect import detect

# Load ASR Model
asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025"
processor = Wav2Vec2Processor.from_pretrained(asr_model_name)
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name)

# Load Text Generation Model
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")

def format_prompt(user_input):
    return f"{user_input}"  

# Load TTS Models
swahili_dir = download("swh", "./data/swahili")
english_dir = download("eng", "./data/english")

swahili_tts = TTS(swahili_dir)
english_tts = TTS(english_dir)

# ASR Function
def transcribe(audio_file):
    speech_array, sample_rate = torchaudio.load(audio_file)
    resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
    speech_array = resampler(speech_array).squeeze().numpy()
    input_values = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_values
    with torch.no_grad():
        logits = asr_model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0]
    return transcription

# Text Generation Function
def generate_text(prompt):
    formatted_prompt = format_prompt(prompt)
    response = client.text_generation(formatted_prompt, max_new_tokens=250, temperature=0.7, top_p=0.95)
    return response.strip()

# TTS Function
def text_to_speech(text):
    lang = detect(text)
    wav_path = "./output.wav"
    if lang == "sw":
        swahili_tts.synthesis(text, wav_path=wav_path)
    else:
        english_tts.synthesis(text, wav_path=wav_path)
    return wav_path

# Combined Processing Function
def process_audio(audio):
    transcription = transcribe(audio)
    generated_text = generate_text(transcription)
    speech = text_to_speech(generated_text)
    return transcription, generated_text, speech

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR, Text Generation, and TTS</p>")
    gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>")
    
    audio_input = gr.Audio(label="Input Audio", type="filepath")
    text_output = gr.Textbox(label="Transcription")
    generated_text_output = gr.Textbox(label="Generated Text")
    audio_output = gr.Audio(label="Output Speech")
    submit_btn = gr.Button("Submit")
    
    submit_btn.click(
        fn=process_audio,
        inputs=audio_input,
        outputs=[text_output, generated_text_output, audio_output]
    )

if __name__ == "__main__":
    demo.launch()