File size: 31,637 Bytes
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
4774a1e
 
242f03e
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
e0288cd
 
242f03e
 
 
 
 
 
 
 
05ea874
242f03e
f89387a
05ea874
242f03e
05ea874
242f03e
f89387a
 
 
 
 
 
 
 
242f03e
05ea874
242f03e
05ea874
f89387a
 
 
242f03e
 
05ea874
 
242f03e
05ea874
242f03e
 
 
 
 
05ea874
242f03e
05ea874
 
242f03e
 
f89387a
05ea874
 
242f03e
 
f89387a
05ea874
 
242f03e
 
f89387a
242f03e
 
 
 
f89387a
242f03e
 
 
 
 
 
 
 
 
e0288cd
242f03e
6aee846
242f03e
 
 
 
 
4c839c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5977d71
242f03e
5977d71
 
6aee846
5977d71
 
242f03e
 
 
 
 
 
5977d71
242f03e
 
5977d71
242f03e
 
5977d71
 
242f03e
 
5977d71
 
242f03e
5977d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
 
242f03e
 
 
 
6aee846
242f03e
 
6aee846
242f03e
 
 
 
 
 
 
 
6aee846
242f03e
 
6aee846
242f03e
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
6aee846
 
 
 
 
242f03e
6aee846
 
 
 
 
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
 
 
242f03e
 
 
 
 
 
6aee846
242f03e
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
 
242f03e
 
 
 
 
 
 
 
 
6aee846
242f03e
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
6aee846
 
 
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
6aee846
 
242f03e
 
 
 
 
 
 
 
 
 
6aee846
242f03e
6aee846
242f03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
 
 
 
 
6aee846
242f03e
 
 
 
 
 
6aee846
242f03e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
# This is my app.py

import os
import torch
import re
import warnings
import time
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from sentence_transformers import SentenceTransformer, util
import gspread
from google.auth import default
from tqdm import tqdm
from duckduckgo_search import DDGS
# Removed spacy and pathlib imports
import base64

# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning)

# --- Configuration ---
SHEET_ID = "19ipxC2vHYhpXCefpxpIkpeYdI43a1Ku2kYwecgUULIw" # Your Google Sheet ID
HF_TOKEN = os.getenv("HF_TOKEN") # Get Hugging Face token from Space Secrets
GOOGLE_SERVICE_ACCOUNT_KEY_BASE64 = os.getenv("GOOGLE_SERVICE_ACCOUNT_KEY_BASE64")

# Changed model_id to Gemma 2B for CPU
# model_id = "google/gemma-2b" # Using Gemma 2B
model_id ="unsloth/gemma-3-1b-it"

# --- Constants for Prompting and Validation ---
SEARCH_MARKER = "ACTION: SEARCH:"
BUSINESS_LOOKUP_MARKER = "ACTION: LOOKUP_BUSINESS_INFO:"
ANSWER_DIRECTLY_MARKER = "ACTION: ANSWER_DIRECTLY:"
BUSINESS_LOOKUP_VALIDATION_THRESHOLD = 0.6
SEARCH_VALIDATION_THRESHOLD = 0.6
PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD = 0.5

# --- Global variables to load once ---
tokenizer = None
model = None
# Removed nlp = None
embedder = None # Sentence Transformer
data = [] # Google Sheet data
descriptions = []
embeddings = torch.tensor([]) # Google Sheet embeddings

# --- Loading Functions (Run once on startup) ---

# Removed load_spacy_model function

def load_sentence_transformer():
    """Loads the Sentence Transformer model."""
    print("Loading Sentence Transformer...")
    try:
        embedder_model = SentenceTransformer("all-MiniLM-L6-v2")
        print("Sentence Transformer loaded.")
        return embedder_model
    except Exception as e:
        print(f"Error loading Sentence Transformer: {e}")
        return None

# Inside app.py, locate this function

def load_google_sheet_data(sheet_id, service_account_key_base64):
    """Authenticates and loads data from Google Sheet."""
    print(f"Attempting to load Google Sheet data from ID: {sheet_id}")
    if not service_account_key_base64:
        print("Warning: GOOGLE_SERVICE_ACCOUNT_KEY_BASE64 secret is not set. Cannot access Google Sheets.")
        return [], [], torch.tensor([])

    try:
        print("Decoding base64 key...")
        key_bytes = base64.b64decode(service_account_key_base64)
        key_dict = json.loads(key_bytes)
        print("Base64 key decoded and parsed.")

        print("Authenticating with service account...")
        from google.oauth2 import service_account

        # --- Suggested Change: Add the Google Sheets Scope ---
        # Define the scopes needed. This is the standard scope for Google Sheets.
        scopes = ['https://www.googleapis.com/auth/spreadsheets.readonly'] # Use read-only if only reading, 'https://www.googleapis.com/auth/spreadsheets' for read/write

        creds = service_account.Credentials.from_service_account_info(key_dict, scopes=scopes)
        # --- End Suggested Change ---

        client = gspread.authorize(creds)
        print("Authentication successful.")

        print(f"Opening sheet with key '{sheet_id}'...")
        # *** IMPORTANT: If your sheet is NOT the first sheet, change 'sheet1'
        # *** For example, if your sheet is named 'Data', use:
        # sheet = client.open_by_key(sheet_id).worksheet("Data")
        sheet = client.open_by_key(sheet_id).sheet1
        print(f"Successfully opened Google Sheet with ID: {sheet_id}")

        print("Getting all records from the sheet...")
        sheet_data = sheet.get_all_records()
        print(f"Retrieved {len(sheet_data)} raw records from sheet.")

        if not sheet_data:
            print(f"Warning: No data records found in Google Sheet with ID: {sheet_id}")
            return [], [], torch.tensor([])

        print("Filtering data for 'Service' and 'Description' columns...")
        filtered_data = [row for row in sheet_data if row.get('Service') and row.get('Description')]
        print(f"Filtered down to {len(filtered_data)} records.")

        if not filtered_data:
            print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
            # Check if headers exist at all if filtered_data is empty but sheet_data isn't
            if sheet_data and ('Service' not in sheet_data[0] or 'Description' not in sheet_data[0]):
                 print("Error: 'Service' or 'Description' headers are missing or misspelled in the sheet.")
            return [], [], torch.tensor([])

        # Re-checking column existence on filtered_data (redundant after filter but safe)
        if 'Service' not in filtered_data[0] or 'Description' not in filtered_data[0]:
             print("Error: Filtered Google Sheet data must contain 'Service' and 'Description' columns. This should not happen if filtering worked.")
             return [], [], torch.tensor([])


        services = [row["Service"] for row in filtered_data]
        descriptions = [row["Description"] for row in filtered_data]
        print(f"Loaded {len(descriptions)} entries from Google Sheet for embedding.")

        return filtered_data, descriptions, None # Return descriptions, embeddings encoded later

    except gspread.exceptions.SpreadsheetNotFound:
        print(f"Error: Google Sheet with ID '{sheet_id}' not found.")
        print("Please check the SHEET_ID and ensure the service account has access.")
        return [], [], torch.tensor([])
    except Exception as e:
        print(f"An error occurred while accessing the Google Sheet: {e}")
        return [], [], torch.tensor([])

        
def load_llm_model(model_id, hf_token):
    """Loads the LLM in full precision (for CPU)."""
    print(f"Loading model {model_id} in full precision...")
    if not hf_token:
        print("Error: HF_TOKEN secret is not set. Cannot load Hugging Face model.")
        return None, None

    try:
        llm_tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)

        # Explicitly set the chat template for Gemma models
        # This template formats messages as <start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n{response}<end_of_turn>\n
        # and adds <bos> at the beginning and <start_of_turn>model\n at the end for generation prompt.
        llm_tokenizer.chat_template = "{% for message in messages %}{% if message['role'] == 'user' %}{{ '<start_of_turn>user\n' + message['content'] + '<end_of_turn>\n' }}{% elif message['role'] == 'system' %}{{ '<start_of_turn>system\n' + message['content'] + '<end_of_turn>\n' }}{% elif message['role'] == 'tool' %}{{ '<start_of_turn>tool\n' + message['content'] + '<end_of_turn>\n' }}{% elif message['role'] == 'model' %}{{ '<start_of_turn>model\n' + message['content'] + '<end_of_turn>\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<start_of_turn>model\n' }}{% endif %}"


        if llm_tokenizer.pad_token is None:
             llm_tokenizer.pad_token = llm_tokenizer.eos_token

        llm_model = AutoModelForCausalLM.from_pretrained(
            model_id,
            token=hf_token,
            device_map="auto", # This will likely map to 'cpu'
        )

        print(f"Model {model_id} loaded in full precision.")
        return llm_model, llm_tokenizer

    except Exception as e:
        print(f"Error loading model {model_id}: {e}")
        print("Please ensure transformers, trl, peft, and accelerate are installed.")
        print("Check your Hugging Face token.")
        return None, None

    try:
        llm_tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
        if llm_tokenizer.pad_token is None:
             llm_tokenizer.pad_token = llm_tokenizer.eos_token

        llm_model = AutoModelForCausalLM.from_pretrained(
            model_id,
            token=hf_token,
            device_map="auto", # This will likely map to 'cpu'
        )

        print(f"Model {model_id} loaded in full precision.")
        return llm_model, llm_tokenizer

    except Exception as e:
        print(f"Error loading model {model_id}: {e}")
        print("Please ensure transformers, trl, peft, and accelerate are installed.")
        print("Check your Hugging Face token.")
        return None, None

# --- Load all assets on startup ---
print("Loading assets...")
# Removed nlp = load_spacy_model() # Keep this line commented out if you removed spaCy
embedder = load_sentence_transformer()
print(f"Embedder loaded: {embedder is not None}") # Add this print

data, descriptions, _ = load_google_sheet_data(SHEET_ID, GOOGLE_SERVICE_ACCOUNT_KEY_BASE64)
print(f"Google Sheet data loaded: {len(data)} rows") # Add this print
print(f"Google Sheet descriptions loaded: {len(descriptions)} items") # Add this print

if embedder and descriptions:
    print("Encoding Google Sheet descriptions...")
    try:
        embeddings = embedder.encode(descriptions, convert_to_tensor=True)
        print("Encoding complete.")
        print(f"Embeddings shape: {embeddings.shape}") # Add this print
    except Exception as e:
        print(f"Error during embedding: {e}")
        embeddings = torch.tensor([]) # Ensure embeddings is an empty tensor on error
else:
     print("Skipping embedding due to missing embedder or descriptions.")
     embeddings = torch.tensor([]) # Ensure embeddings is an empty tensor when skipped
     print(f"Embeddings tensor after skip: {embeddings.shape}") # Should print torch.Size([])

model, tokenizer = load_llm_model(model_id, HF_TOKEN)
print(f"LLM Model loaded: {model is not None}") # Add this print
print(f"LLM Tokenizer loaded: {tokenizer is not None}") # Add this print

# Check if essential components loaded
# This block provides a summary if anything failed during loading
if not model or not tokenizer or not embedder or embeddings is None or embeddings.numel() == 0 or not data:
    print("\nERROR: Essential components failed to load. The application may not function correctly.")
    if not model: print("- LLM Model failed to load.")
    if not tokenizer: print("- LLM Tokenizer failed to load.")
    if not embedder: print("- Sentence Embedder failed to load.")
    # Check if embeddings is not None before accessing numel()
    if embeddings is None or embeddings.numel() == 0: print("- Embeddings are empty or None.")
    if not data: print("- Google Sheet Data is empty.")
    # Descriptions being empty is implicitly covered by data being empty in this context
    # if not descriptions: print("- Google Sheet Descriptions are empty.")
    # Removed spaCy error message
    # Continue, but the main inference function will need checks (already handled by the check at start of respond)
else:
     print("\nAll essential components loaded successfully.") # Add this print
# Check if essential components loaded (Removed nlp from this check)
if not model or not tokenizer or not embedder:
    print("\nERROR: Essential components failed to load. The application may not function correctly.")
    if not model: print("- LLM Model failed to load.")
    if not tokenizer: print("- LLM Tokenizer failed to load.")
    if not embedder: print("- Sentence Embedder failed to load.")
    # Removed spaCy error message
    # Continue, but the main inference function will need checks

# --- Helper Functions ---

def perform_duckduckgo_search(query, max_results=3):
    """
    Performs a search using DuckDuckGo and returns a list of dictionaries.
    Includes a delay to avoid rate limits.
    """
    search_results_list = []
    try:
        time.sleep(1)
        with DDGS() as ddgs:
            for r in ddgs.text(query, max_results=max_results):
                search_results_list.append(r)
    except Exception as e:
        print(f"Error during Duckduckgo search for '{query}': {e}")
        return []
    return search_results_list

def retrieve_business_info(query, data, embeddings, embedder, threshold=0.50):
    """
    Retrieves relevant business information based on query similarity.
    Returns a dictionary if a match above threshold is found, otherwise None.
    Also returns the similarity score.
    Uses the global embedder, data, and embeddings.
    """
    if not data or (embeddings is None or embeddings.numel() == 0) or embedder is None:
        print("Skipping business info retrieval: Data, embeddings or embedder not available.")
        return None, 0.0

    try:
        user_embedding = embedder.encode(query, convert_to_tensor=True)
        cos_scores = util.cos_sim(user_embedding, embeddings)[0]
        best_score = cos_scores.max().item()

        if best_score > threshold:
            best_match_idx = cos_scores.argmax().item()
            best_match = data[best_match_idx]
            return best_match, best_score
        else:
            return None, best_score
    except Exception as e:
         print(f"Error during business information retrieval: {e}")
         return None, 0.0

# Alternative split_query function without spaCy
def split_query(query):
    """Splits a user query into potential sub-queries using regex."""
    # This regex splits on common separators like comma, semicolon, and conjunctions followed by interrogative words
    parts = re.split(r',|;|\band\s+(?:who|what|where|when|why|how|is|are|can|tell me about)\b', query, flags=re.IGNORECASE)
    # Filter out empty strings and strip whitespace
    parts = [part.strip() for part in parts if part and part.strip()]

    # If splitting didn't produce multiple meaningful parts, return the original query
    if len(parts) <= 1:
        return [query]

    return parts

# --- Pass 1 System Prompt ---
pass1_instructions_action = """You are a helpful assistant for a business. Your primary goal in this first step is to analyze the user's query and decide which actions are needed to answer it.

You have analyzed the user's query and potentially broken it down into parts. For each part, a preliminary check was done to see if it matches known business information. The results of this check are provided below.

{business_check_summary}

Based on the user's query and the results of the business info check for each part, identify if you need to perform actions.

Output one or more actions, each on a new line, in the format:
ACTION: [ACTION_TYPE]: [Argument/Query for the action]

Possible actions:
1. **LOOKUP_BUSINESS_INFO**: If a part of the query asks about the business's services, prices, availability, or individuals mentioned in the business context, *and* the business info check for that part indicates a high relevance ({PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f} or higher). The argument should be the specific phrase or name to look up.
2. **SEARCH**: If a part of the query asks for current external information (e.g., current events, real-time data, general facts not in business info), *or* if a part that seems like it could be business info did *not* have a high relevance score in the preliminary check (below {PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f}). The argument should be the precise search query.
3. **ANSWER_DIRECTLY**: If the overall query is a simple greeting or can be answered from your general knowledge without lookup or search, *and* the business info check results indicate low relevance for all parts. The argument should be the direct answer here.

**Crucially:**
- **Prioritize LOOKUP_BUSINESS_INFO** for any part of the query where the preliminary business info check score was {PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f} or higher.
- Use **SEARCH** for parts about external information or where the business info check score was below {PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f}.
- If a part of the query is clearly external (like asking about current events or famous people) even if its business info score wasn't zero, you should likely use SEARCH for it.
- Do NOT output any other text besides the ACTION lines.
- If the results suggest a direct answer is sufficient, use ANSWER_DIRECTLY.

Now, analyze the following user query, considering the business info check results provided above, and output the required actions:
"""

# --- Pass 2 System Prompt ---
pass2_instructions_synthesize = """You are a helpful assistant for a business. You have been provided with the original user query, relevant Business Information (if found), and results from external searches (if performed).

Your task is to synthesize ALL the provided information to answer the user's original question concisely and accurately.

**Prioritize Business Information** for details about the business, its services, or individuals mentioned within that context.
Use the Search Results for current external information that was requested.
If information for a specific part of the question was not found in either Business Information or Search Results, use your general knowledge if possible, or state that the information could not be found.

Synthesize the information into a natural language response. Do NOT copy and paste raw context or strings like 'Business Information:' or 'SEARCH RESULTS:' or 'ACTION:' or the raw user query.

After your answer, generate a few concise follow-up questions that a user might ask based on the previous turn's conversation and your response. List these questions clearly at the end of your response.
When search results were used to answer the question, list the URLs from the search results you used under a "Sources:" heading at the very end.
"""

# --- Main Inference Function for Gradio ---
def respond(user_input, chat_history):
    """
    Processes user input, performs actions (lookup/search), and generates a response.
    Manages chat history within Gradio state.
    """
    # Check if models loaded successfully (Removed nlp from this check)
    if model is None or tokenizer is None or embedder is None:
        return "", chat_history + [(user_input, "Sorry, the application failed to load necessary components. Please try again later or contact the administrator.")]

    original_user_input = user_input

    # Initialize action results containers for this turn
    search_results_dicts = []
    business_lookup_results_formatted = []
    response_pass1_raw = ""

    # --- Pre-Pass 1: Programmatic Business Info Check for Query Parts ---
    query_parts = split_query(original_user_input) # This now uses the regex split
    business_check_results = []
    overall_pre_pass1_score = 0.0

    print("\n--- Processing new user query ---")
    print(f"User: {user_input}")
    print("Performing programmatic business info check on query parts...")

    if query_parts:
        for i, part in enumerate(query_parts):
            match, score = retrieve_business_info(part, data, embeddings, embedder, threshold=0.0)
            business_check_results.append({"part": part, "score": score, "match": match})
            print(f"- Part '{part}': Score {score:.4f}")
            overall_pre_pass1_score = max(overall_pre_pass1_score, score)
    else:
        match, score = retrieve_business_info(original_user_input, data, embeddings, embedder, threshold=0.0)
        business_check_results.append({"part": original_user_input, "score": score, "match": match})
        print(f"- Part '{original_user_input}': Score {score:.4f}")
        overall_pre_pass1_score = score

    is_likely_direct_answer = overall_pre_pass1_score < PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD and len(query_parts) <= 2

    # Format business check summary for Pass 1 prompt
    business_check_summary = "Business Info Check Results for Query Parts:\n"
    if business_check_results:
        for result in business_check_results:
            status = "High Relevance" if result['score'] >= PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD else "Low Relevance"
            business_check_summary += f"- Part '{result['part']}': Score {result['score']:.4f} ({status})\n"
    else:
         business_check_summary += "- No parts identified or check skipped.\n"
    business_check_summary += "\n"

    # --- Pass 1: Action Identification (if not direct answer) ---
    requested_actions = []
    answer_directly_provided = None

    if is_likely_direct_answer:
        print("Programmatically determined likely direct answer.")
        response_pass1_raw = f"ACTION: ANSWER_DIRECTLY: "

    else:
        pass1_user_message_content = pass1_instructions_action.format(
             business_check_summary=business_check_summary,
             PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD=PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD
             ) + "\n\nUser Query: " + user_input

        temp_chat_history_pass1 = [{"role": "user", "content": pass1_user_message_content}]

        try:
            prompt_pass1 = tokenizer.apply_chat_template(
                temp_chat_history_pass1,
                tokenize=False,
                add_generation_prompt=True
            )

            generation_config_pass1 = GenerationConfig(
                max_new_tokens=200,
                do_sample=False,
                temperature=0.1,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.pad_token_id,
                use_cache=True
            )

            input_ids_pass1 = tokenizer(prompt_pass1, return_tensors="pt").input_ids
            if model and input_ids_pass1.numel() > 0:
                outputs_pass1 = model.generate(
                    input_ids=input_ids_pass1,
                    generation_config=generation_config_pass1,
                )
                prompt_length_pass1 = input_ids_pass1.shape[1]
                if outputs_pass1.shape[1] > prompt_length_pass1:
                    generated_tokens_pass1 = outputs_pass1[0, prompt_length_pass1:]
                    response_pass1_raw = tokenizer.decode(generated_tokens_pass1, skip_special_tokens=True).strip()
                else:
                    response_pass1_raw = ""
            else:
                 response_pass1_raw = ""

        except Exception as e:
            print(f"Error during Pass 1 (Action Identification): {e}")
            response_pass1_raw = f"ACTION: ANSWER_DIRECTLY: Error in Pass 1 - {e}"

    # --- Parse Model's Requested Actions with Validation ---
    if response_pass1_raw:
        lines = response_pass1_raw.strip().split('\n')
        for line in lines:
            line = line.strip()
            if line.startswith(SEARCH_MARKER):
                query = line[len(SEARCH_MARKER):].strip()
                if query:
                     _, score = retrieve_business_info(query, data, embeddings, embedder, threshold=0.0)
                     if score < SEARCH_VALIDATION_THRESHOLD:
                         requested_actions.append(("SEARCH", query))
                         print(f"Validated Search Action for '{query}' (Score: {score:.4f})")
                     else:
                         print(f"Rejected Search Action for '{query}' (Score: {score:.4f}) - Too similar to business data.")
            elif line.startswith(BUSINESS_LOOKUP_MARKER):
                 query = line[len(BUSINESS_LOOKUP_MARKER):].strip()
                 if query:
                      match, score = retrieve_business_info(query, data, embeddings, embedder, threshold=0.0)
                      if score > BUSINESS_LOOKUP_VALIDATION_THRESHOLD:
                           requested_actions.append(("LOOKUP_BUSINESS_INFO", query))
                           print(f"Validated Business Lookup Action for '{query}' (Score: {score:.4f})")
                      else:
                           print(f"Rejected Business Lookup Action for '{query}' (Score: {score:.4f}) - Below validation threshold.")
            elif line.startswith(ANSWER_DIRECTLY_MARKER):
                 answer = line[len(ANSWER_DIRECTLY_MARKER):].strip()
                 answer_directly_provided = answer if answer else original_user_input
                 requested_actions = []
                 break

    # --- Execute Actions (Search and Lookup) ---
    context_for_pass2 = ""

    if requested_actions:
        print("Executing requested actions...")
        for action_type, query in requested_actions:
            if action_type == "SEARCH":
                print(f"Performing search for: '{query}'")
                results = perform_duckduckgo_search(query)
                if results:
                     search_results_dicts.extend(results)
                     print(f"Found {len(results)} search results.")
                else:
                     print(f"No search results found for '{query}'.")

            elif action_type == "LOOKUP_BUSINESS_INFO":
                print(f"Performing business info lookup for: '{query}'")
                match, score = retrieve_business_info(query, data, embeddings, embedder, threshold=retrieve_business_info.__defaults__[0])
                print(f"Actual lookup score for '{query}': {score:.4f} (Threshold: {retrieve_business_info.__defaults__[0]})")
                if match:
                     formatted_match = f"""Service: {match.get('Service', 'N/A')}
Description: {match.get('Description', 'N/A')}
Price: {match.get('Price', 'N/A')}
Available: {match.get('Available', 'N/A')}"""
                     business_lookup_results_formatted.append(formatted_match)
                     print(f"Found business info match.")
                else:
                     print(f"No business info match found for '{query}' at threshold {retrieve_business_info.__defaults__[0]}.")

        # --- Prepare Context for Pass 2 based on executed actions ---
        if business_lookup_results_formatted:
            context_for_pass2 += "Business Information (Use this for questions about the business):\n"
            context_for_pass2 += "\n---\n".join(business_lookup_results_formatted)
            context_for_pass2 += "\n\n"

        if search_results_dicts:
            context_for_pass2 += "SEARCH RESULTS (Use this for current external information):\n"
            aggregated_search_results_formatted = []
            for result in search_results_dicts:
                 aggregated_search_results_formatted.append(f"Title: {result.get('title', 'N/A')}\nSnippet: {result.get('body', 'N/A')}\nURL: {result.get('href', 'N/A')}")
            context_for_pass2 += "\n---\n".join(aggregated_search_results_formatted) + "\n\n"

        if requested_actions and not business_lookup_results_formatted and not search_results_dicts:
             context_for_pass2 = "Note: No relevant information was found in Business Information or via Search for your query."
             print("Note: No results were found for the requested actions.")

    # If ANSWER_DIRECTLY was determined
    if answer_directly_provided is not None:
        print(f"Handling as direct answer: {answer_directly_provided}")
        context_for_pass2 = "Note: This query is a simple request or greeting."
        if answer_directly_provided != original_user_input and answer_directly_provided != "":
             context_for_pass2 += f" Initial suggestion from action step: {answer_directly_provided}"
        search_results_dicts = []
        business_lookup_results_formatted = []

    # If no actions or direct answer, and no results
    if not requested_actions and answer_directly_provided is None:
         if response_pass1_raw.strip():
              print("Warning: Pass 1 did not result in valid actions or a direct answer.")
              context_for_pass2 = f"Error: Could not determine actions from Pass 1 response: '{response_pass1_raw}'."
         else:
               print("Warning: Pass 1 generated an empty response.")
               context_for_pass2 = "Error: Pass 1 generated an empty response."

    # --- Pass 2: Synthesize and Respond ---
    final_response = "Sorry, I couldn't generate a response."

    if model is not None and tokenizer is not None:
        pass2_user_message_content = pass2_instructions_synthesize + "\n\nOriginal User Query: " + original_user_input + "\n\n" + context_for_pass2

        model_chat_history = []
        for user_msg, bot_msg in chat_history:
            model_chat_history.append({"role": "user", "content": user_msg})
            model_chat_history.append({"role": "assistant", "content": bot_msg})

        model_chat_history.append({"role": "user", "content": pass2_user_message_content})

        try:
            prompt_pass2 = tokenizer.apply_chat_template(
                model_chat_history,
                tokenize=False,
                add_generation_prompt=True
            )

            generation_config_pass2 = GenerationConfig(
                max_new_tokens=1500,
                do_sample=True,
                temperature=0.7,
                top_k=50,
                top_p=0.95,
                repetition_penalty=1.1,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.pad_token_id,
                use_cache=True
            )

            input_ids_pass2 = tokenizer(prompt_pass2, return_tensors="pt").input_ids
            if model and input_ids_pass2.numel() > 0:
                outputs_pass2 = model.generate(
                    input_ids=input_ids_pass2,
                    generation_config=generation_config_pass2,
                )

                prompt_length_pass2 = input_ids_pass2.shape[1]
                if outputs_pass2.shape[1] > prompt_length_pass2:
                    generated_tokens_pass2 = outputs_pass2[0, prompt_length_pass2:]
                    final_response = tokenizer.decode(generated_tokens_pass2, skip_special_tokens=True).strip()
                else:
                    final_response = "..."
            else:
                final_response = "Error: Model or empty input for Pass 2."

        except Exception as gen_error:
             print(f"Error during model generation in Pass 2: {gen_error}")
             final_response = "Error generating response in Pass 2."

        # --- Post-process Final Response from Pass 2 ---
        cleaned_response = final_response
        lines = cleaned_response.split('\n')
        cleaned_lines = [line for line in lines if not line.strip().lower().startswith("business information")
                                                 and not line.strip().lower().startswith("search results")
                                                 and not line.strip().startswith("---")
                                                 and not line.strip().lower().startswith("original user query:")
                                                 and not line.strip().lower().startswith("you are a helpful assistant for a business.")]

        cleaned_response = "\n".join(cleaned_lines).strip()

        urls_to_list = [result.get('href') for result in search_results_dicts if result.get('href')]
        urls_to_list = list(dict.fromkeys(urls_to_list))

        if search_results_dicts and urls_to_list:
             cleaned_response += "\n\nSources:\n" + "\n".join(urls_to_list)

        final_response = cleaned_response

        if not final_response.strip():
             final_response = "Sorry, I couldn't generate a meaningful response based on the information found."
             print("Warning: Final response was empty after cleaning.")

    else:
     final_response = "Sorry, the core language model is not available."
     print("Error: LLM model or tokenizer not loaded for Pass 2.")

    # --- Update Chat History for Gradio ---
    updated_chat_history = chat_history + [(original_user_input, final_response)]

    max_history_pairs = 10
    if len(updated_chat_history) > max_history_pairs:
     updated_chat_history = updated_chat_history[-max_history_pairs:]

    return "", updated_chat_history