File size: 5,833 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
#               2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Unility functions for Transformer."""

import random
from typing import List

import numpy as np
import torch

IGNORE_ID = -1


def pad_list(xs: List[torch.Tensor], pad_value: int):
    """Perform padding for the list of tensors.

    Args:
        xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
        pad_value (float): Value for padding.

    Returns:
        Tensor: Padded tensor (B, Tmax, `*`).

    Examples:
        >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
        >>> x
        [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
        >>> pad_list(x, 0)
        tensor([[1., 1., 1., 1.],
                [1., 1., 0., 0.],
                [1., 0., 0., 0.]])

    """
    max_len = max([len(item) for item in xs])
    batchs = len(xs)
    ndim = xs[0].ndim
    if ndim == 1:
        pad_res = torch.zeros(batchs,
                              max_len,
                              dtype=xs[0].dtype,
                              device=xs[0].device)
    elif ndim == 2:
        pad_res = torch.zeros(batchs,
                              max_len,
                              xs[0].shape[1],
                              dtype=xs[0].dtype,
                              device=xs[0].device)
    elif ndim == 3:
        pad_res = torch.zeros(batchs,
                              max_len,
                              xs[0].shape[1],
                              xs[0].shape[2],
                              dtype=xs[0].dtype,
                              device=xs[0].device)
    else:
        raise ValueError(f"Unsupported ndim: {ndim}")
    pad_res.fill_(pad_value)
    for i in range(batchs):
        pad_res[i, :len(xs[i])] = xs[i]
    return pad_res


def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
                ignore_label: int) -> torch.Tensor:
    """Calculate accuracy.

    Args:
        pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
        pad_targets (LongTensor): Target label tensors (B, Lmax).
        ignore_label (int): Ignore label id.

    Returns:
        torch.Tensor: Accuracy value (0.0 - 1.0).

    """
    pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
                                pad_outputs.size(1)).argmax(2)
    mask = pad_targets != ignore_label
    numerator = torch.sum(
        pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
    denominator = torch.sum(mask)
    return (numerator / denominator).detach()


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)


# Repetition Aware Sampling in VALL-E 2
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
    top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
    rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
    if rep_num >= win_size * tau_r:
        top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
    return top_ids


def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
    prob, indices = [], []
    cum_prob = 0.0
    sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
    for i in range(len(sorted_idx)):
        # sampling both top-p and numbers.
        if cum_prob < top_p and len(prob) < top_k:
            cum_prob += sorted_value[i]
            prob.append(sorted_value[i])
            indices.append(sorted_idx[i])
        else:
            break
    prob = torch.tensor(prob).to(weighted_scores)
    indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
    top_ids = indices[prob.multinomial(1, replacement=True)]
    return top_ids


def random_sampling(weighted_scores, decoded_tokens, sampling):
    top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
    return top_ids


def fade_in_out(fade_in_mel, fade_out_mel, window):
    device = fade_in_mel.device
    fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
    mel_overlap_len = int(window.shape[0] / 2)
    if fade_in_mel.device == torch.device('cpu'):
        fade_in_mel = fade_in_mel.clone()
    fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
        fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
    return fade_in_mel.to(device)


def set_all_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
    assert mask.dtype == torch.bool
    assert dtype in [torch.float32, torch.bfloat16, torch.float16]
    mask = mask.to(dtype)
    # attention mask bias
    # NOTE(Mddct): torch.finfo jit issues
    #     chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
    mask = (1.0 - mask) * torch.finfo(dtype).min
    return mask