File size: 6,768 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import sys
import torch

def convert_llm(state_dict):
    # 调整了lm的结构,把codec_lm.encoder作为llm,codec_lm.decoder作为decoder
    keys = list(state_dict.keys())
    for k in keys:
        if k.startswith('codec_lm.encoder.'):
            v = state_dict.pop(k)
            k = k.replace('codec_lm.encoder.', 'llm.')
            state_dict[k] = v
        if k.startswith('codec_lm.decoder.'):
            v = state_dict.pop(k)
            k = k.replace('codec_lm.decoder.', 'llm_decoder.')
            state_dict[k] = v
    # espnet和wenet具体实现上的差异
    keys = list(state_dict.keys())
    for k in keys:
        if k.startswith('text_encoder.embed.'):
            v = state_dict.pop(k)
            k = k.replace('text_encoder.embed.', 'text_encoder.embed.out.')
            state_dict[k] = v
        if k.startswith('llm.embed.'):
            v = state_dict.pop(k)
            k = k.replace('llm.embed.', 'llm.embed.out.')
            state_dict[k] = v
    keys = list(state_dict.keys())
    for k in keys:
        if k.startswith('text_enc_out_layer.'):
            v = state_dict.pop(k)
            k = k.replace('text_enc_out_layer.', 'text_encoder_affine_layer.')
            state_dict[k] = v
        if k.startswith('token_embedding.'):
            v = state_dict.pop(k)
            k = k.replace('token_embedding.', 'text_embedding.')
            state_dict[k] = v
        if k.startswith('xvec_proj.'):
            v = state_dict.pop(k)
            k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
            state_dict[k] = v
        if k.startswith('lm_embedding.'):
            v = state_dict.pop(k)
            k = k.replace('lm_embedding.', 'llm_embedding.')
            state_dict[k] = v
        if k.startswith('codec_embedder.'):
            v = state_dict.pop(k)
            k = k.replace('codec_embedder.', 'speech_embedding.')
            state_dict[k] = v
    # instruct少了spk embedding参数,加个全0上去
    keys = list(state_dict.keys())
    if 'spk_embed_affine_layer.weight' not in keys:
        print('no spk_embed_affine_layer.weight, should be instruct model')
        state_dict['spk_embed_affine_layer.weight'] = torch.zeros(1024, 192)
    if 'spk_embed_affine_layer.bias' not in keys:
        print('no spk_embed_affine_layer.bias, should be instruct model')
        state_dict['spk_embed_affine_layer.bias'] = torch.zeros(1024)
    return state_dict

def convert_hift(state_dict):
    # 调整了cosyvoice中hifigan的结构,把f0_predictor放到generator里
    keys = list(state_dict.keys())
    for k in keys:
        if k.startswith('decoder.'):
            v = state_dict.pop(k)
            k = k.replace('decoder.', '')
            state_dict[k] = v
        if k.startswith('generator.'):
            v = state_dict.pop(k)
            k = k.replace('generator.', '')
            state_dict[k] = v
    return state_dict

def convert_flow(state_dict):
    keys = list(state_dict.keys())
    for k in keys:
        if k.startswith('encoder.embed.'):
            v = state_dict.pop(k)
            k = k.replace('encoder.embed.', 'encoder.embed.out.')
            state_dict[k] = v
    for k in keys:
        if k.startswith('xvec_proj.'):
            v = state_dict.pop(k)
            k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
            state_dict[k] = v
    return state_dict

def convert_llm2(state_dict):
    # 调整了lm的结构,把codec_lm.encoder作为llm,codec_lm.decoder作为decoder
    keys = list(state_dict.keys())
    for k in keys:
        if k.startswith('codec_lm.encoder.'):
            v = state_dict.pop(k)
            k = k.replace('codec_lm.encoder.', 'llm.')
            state_dict[k] = v
        if k.startswith('codec_lm.decoder.'):
            v = state_dict.pop(k)
            k = k.replace('codec_lm.decoder.', 'llm_decoder.')
            state_dict[k] = v
        if k.startswith('lm_embedding.'):
            v = state_dict.pop(k)
            k = k.replace('lm_embedding.', 'llm_embedding.')
            state_dict[k] = v
        if k.startswith('codec_embedder.'):
            v = state_dict.pop(k)
            k = k.replace('codec_embedder.', 'speech_embedding.')
            state_dict[k] = v
        if k.startswith('text_enc_out_layer.'):
            state_dict.pop(k)
        if k.startswith('token_embedding.weight'):
            state_dict.pop(k)
    return state_dict

def convert_flow2(state_dict):
    keys = list(state_dict.keys())
    for k in keys:
        if k.startswith('encoder.embed.'):
            v = state_dict.pop(k)
            k = k.replace('encoder.embed.', 'encoder.embed.out.')
            state_dict[k] = v
    for k in keys:
        if k.startswith('xvec_proj.'):
            v = state_dict.pop(k)
            k = k.replace('xvec_proj.', 'spk_embed_affine_layer.')
            state_dict[k] = v
    for k in keys:
        if k.startswith('mel_extractor.'):
            state_dict.pop(k)
    for k in keys:
        if k.startswith('encoder.upsample_blocks.0.0.'):
            v = state_dict.pop(k)
            k = k.replace('encoder.upsample_blocks.0.0.', 'encoder.up_layer.')
            state_dict[k] = v
        if k.startswith('encoder.upsample_blocks.0.1.'):
            v = state_dict.pop(k)
            k = k.replace('encoder.upsample_blocks.0.1.', 'encoder.up_embed.out.')
            state_dict[k] = v
        if k.startswith('encoder.upsample_blocks.0.2.'):
            v = state_dict.pop(k)
            k = k.replace('encoder.upsample_blocks.0.2.', 'encoder.up_encoders.')
            state_dict[k] = v
        # CausalBlock1D中sequantial 1->2
        if k.startswith('decoder.estimator.') and k.endswith('block.1.weight'):
            v = state_dict.pop(k)
            k = k.replace('block.1.weight', 'block.2.weight')
            state_dict[k] = v
        if k.startswith('decoder.estimator.') and k.endswith('block.1.bias'):
            v = state_dict.pop(k)
            k = k.replace('block.1.bias', 'block.2.bias')
            state_dict[k] = v
    return state_dict

if __name__ == '__main__':
    # 使用方法 python3 convert.py 原格式llm.pt llm normalize 新格式llm.pt
    # 或者 python3 convert.py 新格式llm.pt llm inverse_normalize 原格式llm.pt
    state_dict = torch.load(sys.argv[1], map_location='cpu')
    if sys.argv[2] == 'llm':
        state_dict = convert_llm(state_dict)
    elif sys.argv[2] == 'flow':
        state_dict = convert_flow(state_dict)
    elif sys.argv[2] == 'hift':
        state_dict = convert_hift(state_dict)
    elif sys.argv[2] == 'llm2':
        state_dict = convert_llm2(state_dict)
    elif sys.argv[2] == 'flow2':
        state_dict = convert_flow2(state_dict)
    else:
        raise ValueError
    torch.save(state_dict, sys.argv[4])