Spaces:
Runtime error
Runtime error
File size: 3,998 Bytes
12bfd03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.append('../../')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Init model and load weights\n",
"Model ready\n",
"Globbed 12 wav files.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββ| 1/1 [00:00<00:00, 11.08it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"wav.shape: (97681,)\n",
"acoustic_token: tensor([[[ 11, 591, 281, 629],\n",
" [733, 591, 401, 139],\n",
" [500, 591, 733, 600],\n",
" ...,\n",
" [733, 591, 451, 346],\n",
" [733, 591, 401, 139],\n",
" [386, 591, 281, 461]]], device='cuda:0')\n",
"acoustic_token.shape: torch.Size([1, 305, 4])\n",
"acoustic_token.dtype: torch.int64\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"import glob\n",
"import json\n",
"import os\n",
"from pathlib import Path\n",
"\n",
"import librosa\n",
"import torch\n",
"from academicodec.models.hificodec.vqvae import VQVAE\n",
"from librosa.util import normalize\n",
"from tqdm import tqdm\n",
"\n",
"ckpt_path = './checkpoint/HiFi-Codec-24k-320d'\n",
"config_path = './config_24k_320d.json'\n",
"with open(config_path, 'r') as f:\n",
" config = json.load(f)\n",
" sample_rate = config['sampling_rate']\n",
"\n",
"outputdir = './output'\n",
"inputdir = './test_wav'\n",
"num = 1024\n",
"\n",
"if __name__ == '__main__':\n",
" Path(outputdir).mkdir(parents=True, exist_ok=True)\n",
" print(\"Init model and load weights\")\n",
" # make sure you downloaded the weights from https://huggingface.co/Dongchao/AcademiCodec/blob/main/HiFi-Codec-24k-320d \n",
" # and put it in ./checkpoint/\n",
" model = VQVAE(\n",
" config_path,\n",
" ckpt_path,\n",
" with_encoder=True)\n",
" model.cuda()\n",
" model.eval()\n",
" print(\"Model ready\")\n",
"\n",
" wav_paths = glob.glob(f\"{inputdir}/*.wav\")[:num]\n",
" print(f\"Globbed {len(wav_paths)} wav files.\")\n",
" fid_to_acoustic_token = {}\n",
" for wav_path in tqdm(wav_paths[:1]):\n",
" wav, sr = librosa.load(wav_path, sr=sample_rate)\n",
" print(\"wav.shape:\",wav.shape)\n",
" assert sr == sample_rate\n",
" fid = os.path.basename(wav_path)[:-4]\n",
" wav = normalize(wav) * 0.95\n",
" wav = torch.FloatTensor(wav).unsqueeze(0)\n",
" wav = wav.to(torch.device('cuda'))\n",
" acoustic_token = model.encode(wav)\n",
" print(\"acoustic_token:\",acoustic_token)\n",
" print(\"acoustic_token.shape:\",acoustic_token.shape)\n",
" print(\"acoustic_token.dtype:\",acoustic_token.dtype)\n",
" fid = os.path.basename(wav_path)[:-4]\n",
" fid_to_acoustic_token[fid] = acoustic_token\n",
"\n",
" torch.save(fid_to_acoustic_token,\n",
" os.path.join(outputdir, 'fid_to_acoustic_token.pth'))\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|