File size: 6,055 Bytes
df6c67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import abc
from collections import defaultdict
from queue import Queue
from typing import List, Optional, Set

import networkx as nx

from inference.enterprise.workflows.complier.utils import get_nodes_of_specific_kind
from inference.enterprise.workflows.constants import STEP_NODE_KIND


class StepExecutionCoordinator(metaclass=abc.ABCMeta):

    @classmethod
    @abc.abstractmethod
    def init(cls, execution_graph: nx.DiGraph) -> "StepExecutionCoordinator":
        pass

    @abc.abstractmethod
    def get_steps_to_execute_next(
        self, steps_to_discard: Set[str]
    ) -> Optional[List[str]]:
        pass


class SerialExecutionCoordinator(StepExecutionCoordinator):

    @classmethod
    def init(cls, execution_graph: nx.DiGraph) -> "StepExecutionCoordinator":
        return cls(execution_graph=execution_graph)

    def __init__(self, execution_graph: nx.DiGraph):
        self._execution_graph = execution_graph.copy()
        self._discarded_steps: Set[str] = set()
        self.__order: Optional[List[str]] = None
        self.__step_pointer = 0

    def get_steps_to_execute_next(
        self, steps_to_discard: Set[str]
    ) -> Optional[List[str]]:
        if self.__order is None:
            self.__establish_execution_order()
        self._discarded_steps.update(steps_to_discard)
        next_step = None
        while self.__step_pointer < len(self.__order):
            candidate_step = self.__order[self.__step_pointer]
            self.__step_pointer += 1
            if candidate_step in self._discarded_steps:
                continue
            return [candidate_step]
        return next_step

    def __establish_execution_order(self) -> None:
        step_nodes = get_nodes_of_specific_kind(
            execution_graph=self._execution_graph, kind=STEP_NODE_KIND
        )
        self.__order = [
            n for n in nx.topological_sort(self._execution_graph) if n in step_nodes
        ]
        self.__step_pointer = 0


class ParallelStepExecutionCoordinator(StepExecutionCoordinator):

    @classmethod
    def init(cls, execution_graph: nx.DiGraph) -> "StepExecutionCoordinator":
        return cls(execution_graph=execution_graph)

    def __init__(self, execution_graph: nx.DiGraph):
        self._execution_graph = execution_graph.copy()
        self._discarded_steps: Set[str] = set()
        self.__execution_order: Optional[List[List[str]]] = None
        self.__execution_pointer = 0

    def get_steps_to_execute_next(
        self, steps_to_discard: Set[str]
    ) -> Optional[List[str]]:
        if self.__execution_order is None:
            self.__execution_order = establish_execution_order(
                execution_graph=self._execution_graph
            )
            self.__execution_pointer = 0
        self._discarded_steps.update(steps_to_discard)
        next_step = None
        while self.__execution_pointer < len(self.__execution_order):
            candidate_steps = [
                e
                for e in self.__execution_order[self.__execution_pointer]
                if e not in self._discarded_steps
            ]
            self.__execution_pointer += 1
            if len(candidate_steps) == 0:
                continue
            return candidate_steps
        return next_step


def establish_execution_order(
    execution_graph: nx.DiGraph,
) -> List[List[str]]:
    steps_flow_graph = construct_steps_flow_graph(execution_graph=execution_graph)
    steps_flow_graph = assign_max_distances_from_start(
        steps_flow_graph=steps_flow_graph
    )
    return get_groups_execution_order(steps_flow_graph=steps_flow_graph)


def construct_steps_flow_graph(execution_graph: nx.DiGraph) -> nx.DiGraph:
    steps_flow_graph = nx.DiGraph()
    steps_flow_graph.add_node("start")
    steps_flow_graph.add_node("end")
    step_nodes = get_nodes_of_specific_kind(
        execution_graph=execution_graph, kind=STEP_NODE_KIND
    )
    for step_node in step_nodes:
        for predecessor in execution_graph.predecessors(step_node):
            start_node = predecessor if predecessor in step_nodes else "start"
            steps_flow_graph.add_edge(start_node, step_node)
        for successor in execution_graph.successors(step_node):
            end_node = successor if successor in step_nodes else "end"
            steps_flow_graph.add_edge(step_node, end_node)
    return steps_flow_graph


def assign_max_distances_from_start(steps_flow_graph: nx.DiGraph) -> nx.DiGraph:
    nodes_to_consider = Queue()
    nodes_to_consider.put("start")
    while nodes_to_consider.qsize() > 0:
        node_to_consider = nodes_to_consider.get()
        predecessors = list(steps_flow_graph.predecessors(node_to_consider))
        if not all(
            steps_flow_graph.nodes[p].get("distance") is not None for p in predecessors
        ):
            # we can proceed to establish distance, only if all parents have distances established
            continue
        if len(predecessors) == 0:
            distance_from_start = 0
        else:
            distance_from_start = (
                max(steps_flow_graph.nodes[p]["distance"] for p in predecessors) + 1
            )
        steps_flow_graph.nodes[node_to_consider]["distance"] = distance_from_start
        for neighbour in steps_flow_graph.successors(node_to_consider):
            nodes_to_consider.put(neighbour)
    return steps_flow_graph


def get_groups_execution_order(steps_flow_graph: nx.DiGraph) -> List[List[str]]:
    distance2steps = defaultdict(list)
    for node_name, node_data in steps_flow_graph.nodes(data=True):
        if node_name in {"start", "end"}:
            continue
        distance2steps[node_data["distance"]].append(node_name)
    sorted_distances = sorted(list(distance2steps.keys()))
    return [distance2steps[d] for d in sorted_distances]


def get_next_steps_to_execute(
    execution_order: List[List[str]],
    execution_pointer: int,
    discarded_steps: Set[str],
) -> List[str]:
    return [e for e in execution_order[execution_pointer] if e not in discarded_steps]