File size: 13,358 Bytes
df6c67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from typing import Any, List, Tuple, Union

import numpy as np

from inference.core.entities.responses.inference import (
    InferenceResponseImage,
    InstanceSegmentationInferenceResponse,
    InstanceSegmentationPrediction,
    Point,
)
from inference.core.exceptions import InvalidMaskDecodeArgument
from inference.core.models.roboflow import OnnxRoboflowInferenceModel
from inference.core.models.types import PreprocessReturnMetadata
from inference.core.models.utils.validate import (
    get_num_classes_from_model_prediction_shape,
)
from inference.core.nms import w_np_non_max_suppression
from inference.core.utils.postprocess import (
    masks2poly,
    post_process_bboxes,
    post_process_polygons,
    process_mask_accurate,
    process_mask_fast,
    process_mask_tradeoff,
)

DEFAULT_CONFIDENCE = 0.4
DEFAULT_IOU_THRESH = 0.3
DEFAULT_CLASS_AGNOSTIC_NMS = False
DEFAUlT_MAX_DETECTIONS = 300
DEFAULT_MAX_CANDIDATES = 3000
DEFAULT_MASK_DECODE_MODE = "accurate"
DEFAULT_TRADEOFF_FACTOR = 0.0

PREDICTIONS_TYPE = List[List[List[float]]]


class InstanceSegmentationBaseOnnxRoboflowInferenceModel(OnnxRoboflowInferenceModel):
    """Roboflow ONNX Instance Segmentation model.

    This class implements an instance segmentation specific inference method
    for ONNX models provided by Roboflow.
    """

    task_type = "instance-segmentation"
    num_masks = 32

    def infer(
        self,
        image: Any,
        class_agnostic_nms: bool = False,
        confidence: float = DEFAULT_CONFIDENCE,
        disable_preproc_auto_orient: bool = False,
        disable_preproc_contrast: bool = False,
        disable_preproc_grayscale: bool = False,
        disable_preproc_static_crop: bool = False,
        iou_threshold: float = DEFAULT_IOU_THRESH,
        mask_decode_mode: str = DEFAULT_MASK_DECODE_MODE,
        max_candidates: int = DEFAULT_MAX_CANDIDATES,
        max_detections: int = DEFAUlT_MAX_DETECTIONS,
        return_image_dims: bool = False,
        tradeoff_factor: float = DEFAULT_TRADEOFF_FACTOR,
        **kwargs,
    ) -> Union[PREDICTIONS_TYPE, Tuple[PREDICTIONS_TYPE, List[Tuple[int, int]]]]:
        """
        Process an image or list of images for instance segmentation.

        Args:
            image (Any): An image or a list of images for processing.
            class_agnostic_nms (bool, optional): Whether to use class-agnostic non-maximum suppression. Defaults to False.
            confidence (float, optional): Confidence threshold for predictions. Defaults to 0.5.
            iou_threshold (float, optional): IoU threshold for non-maximum suppression. Defaults to 0.5.
            mask_decode_mode (str, optional): Decoding mode for masks. Choices are "accurate", "tradeoff", and "fast". Defaults to "accurate".
            max_candidates (int, optional): Maximum number of candidate detections. Defaults to 3000.
            max_detections (int, optional): Maximum number of detections after non-maximum suppression. Defaults to 300.
            return_image_dims (bool, optional): Whether to return the dimensions of the processed images. Defaults to False.
            tradeoff_factor (float, optional): Tradeoff factor used when `mask_decode_mode` is set to "tradeoff". Must be in [0.0, 1.0]. Defaults to 0.5.
            disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False.
            disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False.
            disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False.
            disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
            **kwargs: Additional parameters to customize the inference process.

        Returns:
            Union[List[List[List[float]]], Tuple[List[List[List[float]]], List[Tuple[int, int]]]]: The list of predictions, with each prediction being a list of lists. Optionally, also returns the dimensions of the processed images.

        Raises:
            InvalidMaskDecodeArgument: If an invalid `mask_decode_mode` is provided or if the `tradeoff_factor` is outside the allowed range.

        Notes:
            - Processes input images and normalizes them.
            - Makes predictions using the ONNX runtime.
            - Applies non-maximum suppression to the predictions.
            - Decodes the masks according to the specified mode.
        """
        return super().infer(
            image,
            class_agnostic_nms=class_agnostic_nms,
            confidence=confidence,
            disable_preproc_auto_orient=disable_preproc_auto_orient,
            disable_preproc_contrast=disable_preproc_contrast,
            disable_preproc_grayscale=disable_preproc_grayscale,
            disable_preproc_static_crop=disable_preproc_static_crop,
            iou_threshold=iou_threshold,
            mask_decode_mode=mask_decode_mode,
            max_candidates=max_candidates,
            max_detections=max_detections,
            return_image_dims=return_image_dims,
            tradeoff_factor=tradeoff_factor,
        )

    def postprocess(
        self,
        predictions: Tuple[np.ndarray, np.ndarray],
        preprocess_return_metadata: PreprocessReturnMetadata,
        **kwargs,
    ) -> Union[
        InstanceSegmentationInferenceResponse,
        List[InstanceSegmentationInferenceResponse],
    ]:
        predictions, protos = predictions
        predictions = w_np_non_max_suppression(
            predictions,
            conf_thresh=kwargs["confidence"],
            iou_thresh=kwargs["iou_threshold"],
            class_agnostic=kwargs["class_agnostic_nms"],
            max_detections=kwargs["max_detections"],
            max_candidate_detections=kwargs["max_candidates"],
            num_masks=self.num_masks,
        )
        infer_shape = (self.img_size_h, self.img_size_w)
        predictions = np.array(predictions)
        masks = []
        mask_decode_mode = kwargs["mask_decode_mode"]
        tradeoff_factor = kwargs["tradeoff_factor"]
        img_in_shape = preprocess_return_metadata["im_shape"]
        if predictions.shape[1] > 0:
            for i, (pred, proto, img_dim) in enumerate(
                zip(predictions, protos, preprocess_return_metadata["img_dims"])
            ):
                if mask_decode_mode == "accurate":
                    batch_masks = process_mask_accurate(
                        proto, pred[:, 7:], pred[:, :4], img_in_shape[2:]
                    )
                    output_mask_shape = img_in_shape[2:]
                elif mask_decode_mode == "tradeoff":
                    if not 0 <= tradeoff_factor <= 1:
                        raise InvalidMaskDecodeArgument(
                            f"Invalid tradeoff_factor: {tradeoff_factor}. Must be in [0.0, 1.0]"
                        )
                    batch_masks = process_mask_tradeoff(
                        proto,
                        pred[:, 7:],
                        pred[:, :4],
                        img_in_shape[2:],
                        tradeoff_factor,
                    )
                    output_mask_shape = batch_masks.shape[1:]
                elif mask_decode_mode == "fast":
                    batch_masks = process_mask_fast(
                        proto, pred[:, 7:], pred[:, :4], img_in_shape[2:]
                    )
                    output_mask_shape = batch_masks.shape[1:]
                else:
                    raise InvalidMaskDecodeArgument(
                        f"Invalid mask_decode_mode: {mask_decode_mode}. Must be one of ['accurate', 'fast', 'tradeoff']"
                    )
                polys = masks2poly(batch_masks)
                pred[:, :4] = post_process_bboxes(
                    [pred[:, :4]],
                    infer_shape,
                    [img_dim],
                    self.preproc,
                    resize_method=self.resize_method,
                    disable_preproc_static_crop=preprocess_return_metadata[
                        "disable_preproc_static_crop"
                    ],
                )[0]
                polys = post_process_polygons(
                    img_dim,
                    polys,
                    output_mask_shape,
                    self.preproc,
                    resize_method=self.resize_method,
                )
                masks.append(polys)
        else:
            masks.extend([[]] * len(predictions))
        return self.make_response(
            predictions, masks, preprocess_return_metadata["img_dims"], **kwargs
        )

    def preprocess(
        self, image: Any, **kwargs
    ) -> Tuple[np.ndarray, PreprocessReturnMetadata]:
        img_in, img_dims = self.load_image(
            image,
            disable_preproc_auto_orient=kwargs.get("disable_preproc_auto_orient"),
            disable_preproc_contrast=kwargs.get("disable_preproc_contrast"),
            disable_preproc_grayscale=kwargs.get("disable_preproc_grayscale"),
            disable_preproc_static_crop=kwargs.get("disable_preproc_static_crop"),
        )

        img_in /= 255.0
        return img_in, PreprocessReturnMetadata(
            {
                "img_dims": img_dims,
                "im_shape": img_in.shape,
                "disable_preproc_static_crop": kwargs.get(
                    "disable_preproc_static_crop"
                ),
            }
        )

    def make_response(
        self,
        predictions: List[List[List[float]]],
        masks: List[List[List[float]]],
        img_dims: List[Tuple[int, int]],
        class_filter: List[str] = [],
        **kwargs,
    ) -> Union[
        InstanceSegmentationInferenceResponse,
        List[InstanceSegmentationInferenceResponse],
    ]:
        """
        Create instance segmentation inference response objects for the provided predictions and masks.

        Args:
            predictions (List[List[List[float]]]): List of prediction data, one for each image.
            masks (List[List[List[float]]]): List of masks corresponding to the predictions.
            img_dims (List[Tuple[int, int]]): List of image dimensions corresponding to the processed images.
            class_filter (List[str], optional): List of class names to filter predictions by. Defaults to an empty list (no filtering).

        Returns:
            Union[InstanceSegmentationInferenceResponse, List[InstanceSegmentationInferenceResponse]]: A single instance segmentation response or a list of instance segmentation responses based on the number of processed images.

        Notes:
            - For each image, constructs an `InstanceSegmentationInferenceResponse` object.
            - Each response contains a list of `InstanceSegmentationPrediction` objects.
        """
        responses = [
            InstanceSegmentationInferenceResponse(
                predictions=[
                    InstanceSegmentationPrediction(
                        # Passing args as a dictionary here since one of the args is 'class' (a protected term in Python)
                        **{
                            "x": (pred[0] + pred[2]) / 2,
                            "y": (pred[1] + pred[3]) / 2,
                            "width": pred[2] - pred[0],
                            "height": pred[3] - pred[1],
                            "points": [Point(x=point[0], y=point[1]) for point in mask],
                            "confidence": pred[4],
                            "class": self.class_names[int(pred[6])],
                            "class_id": int(pred[6]),
                        }
                    )
                    for pred, mask in zip(batch_predictions, batch_masks)
                    if not class_filter
                    or self.class_names[int(pred[6])] in class_filter
                ],
                image=InferenceResponseImage(
                    width=img_dims[ind][1], height=img_dims[ind][0]
                ),
            )
            for ind, (batch_predictions, batch_masks) in enumerate(
                zip(predictions, masks)
            )
        ]
        return responses

    def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, np.ndarray]:
        """Runs inference on the ONNX model.

        Args:
            img_in (np.ndarray): The preprocessed image(s) to run inference on.

        Returns:
            Tuple[np.ndarray, np.ndarray]: The ONNX model predictions and the ONNX model protos.

        Raises:
            NotImplementedError: This method must be implemented by a subclass.
        """
        raise NotImplementedError("predict must be implemented by a subclass")

    def validate_model_classes(self) -> None:
        output_shape = self.get_model_output_shape()
        num_classes = get_num_classes_from_model_prediction_shape(
            output_shape[2], masks=self.num_masks
        )
        try:
            assert num_classes == self.num_classes
        except AssertionError:
            raise ValueError(
                f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})"
            )