File size: 12,767 Bytes
df6c67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import uuid

from dotenv import load_dotenv

from inference.core.utils.environment import safe_split_value, str2bool

load_dotenv(os.getcwd() + "/.env")

# The project name, default is "roboflow-platform"
PROJECT = os.getenv("PROJECT", "roboflow-platform")

# Allow numpy input, default is True
ALLOW_NUMPY_INPUT = str2bool(os.getenv("ALLOW_NUMPY_INPUT", True))

# List of allowed origins
ALLOW_ORIGINS = os.getenv("ALLOW_ORIGINS", "")
ALLOW_ORIGINS = ALLOW_ORIGINS.split(",")

# Base URL for the API
API_BASE_URL = os.getenv(
    "API_BASE_URL",
    (
        "https://api.roboflow.com"
        if PROJECT == "roboflow-platform"
        else "https://api.roboflow.one"
    ),
)

# Debug flag for the API, default is False
API_DEBUG = os.getenv("API_DEBUG", False)

# API key, default is None
API_KEY_ENV_NAMES = ["ROBOFLOW_API_KEY", "API_KEY"]
API_KEY = os.getenv(API_KEY_ENV_NAMES[0], None) or os.getenv(API_KEY_ENV_NAMES[1], None)

# AWS access key ID, default is None
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID", None)

# AWS secret access key, default is None
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY", None)

COGVLM_LOAD_4BIT = str2bool(os.getenv("COGVLM_LOAD_4BIT", True))
COGVLM_LOAD_8BIT = str2bool(os.getenv("COGVLM_LOAD_8BIT", False))
COGVLM_VERSION_ID = os.getenv("COGVLM_VERSION_ID", "cogvlm-chat-hf")
# CLIP version ID, default is "ViT-B-16"
CLIP_VERSION_ID = os.getenv("CLIP_VERSION_ID", "ViT-B-16")

# CLIP model ID
CLIP_MODEL_ID = f"clip/{CLIP_VERSION_ID}"

# Gaze version ID, default is "L2CS"
GAZE_VERSION_ID = os.getenv("GAZE_VERSION_ID", "L2CS")

# Gaze model ID
GAZE_MODEL_ID = f"gaze/{CLIP_VERSION_ID}"

# Maximum batch size for GAZE, default is 8
GAZE_MAX_BATCH_SIZE = int(os.getenv("GAZE_MAX_BATCH_SIZE", 8))

# If true, this will store a non-verbose version of the inference request and repsonse in the cache
TINY_CACHE = str2bool(os.getenv("TINY_CACHE", True))

# Maximum batch size for CLIP, default is 8
CLIP_MAX_BATCH_SIZE = int(os.getenv("CLIP_MAX_BATCH_SIZE", 8))

# Class agnostic NMS flag, default is False
CLASS_AGNOSTIC_NMS_ENV = "CLASS_AGNOSTIC_NMS"
DEFAULT_CLASS_AGNOSTIC_NMS = False
CLASS_AGNOSTIC_NMS = str2bool(
    os.getenv(CLASS_AGNOSTIC_NMS_ENV, DEFAULT_CLASS_AGNOSTIC_NMS)
)

# Confidence threshold, default is 50%
CONFIDENCE_ENV = "CONFIDENCE"
DEFAULT_CONFIDENCE = 0.4
CONFIDENCE = float(os.getenv(CONFIDENCE_ENV, DEFAULT_CONFIDENCE))

# Flag to enable core models, default is True
CORE_MODELS_ENABLED = str2bool(os.getenv("CORE_MODELS_ENABLED", True))

# Flag to enable CLIP core model, default is True
CORE_MODEL_CLIP_ENABLED = str2bool(os.getenv("CORE_MODEL_CLIP_ENABLED", True))

# Flag to enable SAM core model, default is True
CORE_MODEL_SAM_ENABLED = str2bool(os.getenv("CORE_MODEL_SAM_ENABLED", True))

# Flag to enable GAZE core model, default is True
CORE_MODEL_GAZE_ENABLED = str2bool(os.getenv("CORE_MODEL_GAZE_ENABLED", True))

# Flag to enable DocTR core model, default is True
CORE_MODEL_DOCTR_ENABLED = str2bool(os.getenv("CORE_MODEL_DOCTR_ENABLED", True))

# Flag to enable GROUNDINGDINO core model, default is True
CORE_MODEL_GROUNDINGDINO_ENABLED = str2bool(
    os.getenv("CORE_MODEL_GROUNDINGDINO_ENABLED", True)
)

# Flag to enable CogVLM core model, default is True
CORE_MODEL_COGVLM_ENABLED = str2bool(os.getenv("CORE_MODEL_COGVLM_ENABLED", True))

# Flag to enable YOLO-World core model, default is True
CORE_MODEL_YOLO_WORLD_ENABLED = str2bool(
    os.getenv("CORE_MODEL_YOLO_WORLD_ENABLED", True)
)

# ID of host device, default is None
DEVICE_ID = os.getenv("DEVICE_ID", None)

# Flag to disable inference cache, default is False
DISABLE_INFERENCE_CACHE = str2bool(os.getenv("DISABLE_INFERENCE_CACHE", False))

# Flag to disable auto-orientation preprocessing, default is False
DISABLE_PREPROC_AUTO_ORIENT = str2bool(os.getenv("DISABLE_PREPROC_AUTO_ORIENT", False))

# Flag to disable contrast preprocessing, default is False
DISABLE_PREPROC_CONTRAST = str2bool(os.getenv("DISABLE_PREPROC_CONTRAST", False))

# Flag to disable grayscale preprocessing, default is False
DISABLE_PREPROC_GRAYSCALE = str2bool(os.getenv("DISABLE_PREPROC_GRAYSCALE", False))

# Flag to disable static crop preprocessing, default is False
DISABLE_PREPROC_STATIC_CROP = str2bool(os.getenv("DISABLE_PREPROC_STATIC_CROP", False))

# Flag to disable version check, default is False
DISABLE_VERSION_CHECK = str2bool(os.getenv("DISABLE_VERSION_CHECK", False))

# ElastiCache endpoint
ELASTICACHE_ENDPOINT = os.environ.get(
    "ELASTICACHE_ENDPOINT",
    (
        "roboflow-infer-prod.ljzegl.cfg.use2.cache.amazonaws.com:11211"
        if PROJECT == "roboflow-platform"
        else "roboflow-infer.ljzegl.cfg.use2.cache.amazonaws.com:11211"
    ),
)

# Flag to enable byte track, default is False
ENABLE_BYTE_TRACK = str2bool(os.getenv("ENABLE_BYTE_TRACK", False))

# Flag to enforce FPS, default is False
ENFORCE_FPS = str2bool(os.getenv("ENFORCE_FPS", False))
MAX_FPS = os.getenv("MAX_FPS")
if MAX_FPS is not None:
    MAX_FPS = int(MAX_FPS)

# Flag to fix batch size, default is False
FIX_BATCH_SIZE = str2bool(os.getenv("FIX_BATCH_SIZE", False))

# Host, default is "0.0.0.0"
HOST = os.getenv("HOST", "0.0.0.0")

# IoU threshold, default is 0.3
IOU_THRESHOLD_ENV = "IOU_THRESHOLD"
DEFAULT_IOU_THRESHOLD = 0.3
IOU_THRESHOLD = float(os.getenv(IOU_THRESHOLD_ENV, DEFAULT_IOU_THRESHOLD))

# IP broadcast address, default is "127.0.0.1"
IP_BROADCAST_ADDR = os.getenv("IP_BROADCAST_ADDR", "127.0.0.1")

# IP broadcast port, default is 37020
IP_BROADCAST_PORT = int(os.getenv("IP_BROADCAST_PORT", 37020))

# Flag to enable JSON response, default is True
JSON_RESPONSE = str2bool(os.getenv("JSON_RESPONSE", True))

# Lambda flag, default is False
LAMBDA = str2bool(os.getenv("LAMBDA", False))

# Flag to enable legacy route, default is True
LEGACY_ROUTE_ENABLED = str2bool(os.getenv("LEGACY_ROUTE_ENABLED", True))

# License server, default is None
LICENSE_SERVER = os.getenv("LICENSE_SERVER", None)

# Log level, default is "INFO"
LOG_LEVEL = os.getenv("LOG_LEVEL", "WARNING")

# Maximum number of active models, default is 8
MAX_ACTIVE_MODELS = int(os.getenv("MAX_ACTIVE_MODELS", 8))

# Maximum batch size, default is infinite
MAX_BATCH_SIZE = os.getenv("MAX_BATCH_SIZE", None)
if MAX_BATCH_SIZE is not None:
    MAX_BATCH_SIZE = int(MAX_BATCH_SIZE)
else:
    MAX_BATCH_SIZE = float("inf")

# Maximum number of candidates, default is 3000
MAX_CANDIDATES_ENV = "MAX_CANDIDATES"
DEFAULT_MAX_CANDIDATES = 3000
MAX_CANDIDATES = int(os.getenv(MAX_CANDIDATES_ENV, DEFAULT_MAX_CANDIDATES))

# Maximum number of detections, default is 300
MAX_DETECTIONS_ENV = "MAX_DETECTIONS"
DEFAULT_MAX_DETECTIONS = 300
MAX_DETECTIONS = int(os.getenv(MAX_DETECTIONS_ENV, DEFAULT_MAX_DETECTIONS))

# Loop interval for expiration of memory cache, default is 5
MEMORY_CACHE_EXPIRE_INTERVAL = int(os.getenv("MEMORY_CACHE_EXPIRE_INTERVAL", 5))

# Metrics enabled flag, default is True
METRICS_ENABLED = str2bool(os.getenv("METRICS_ENABLED", True))
if LAMBDA:
    METRICS_ENABLED = False

# Interval for metrics aggregation, default is 60
METRICS_INTERVAL = int(os.getenv("METRICS_INTERVAL", 60))

# URL for posting metrics to Roboflow API, default is "{API_BASE_URL}/inference-stats"
METRICS_URL = os.getenv("METRICS_URL", f"{API_BASE_URL}/inference-stats")

# Model cache directory, default is "/tmp/cache"
MODEL_CACHE_DIR = os.getenv("MODEL_CACHE_DIR", "/tmp/cache")

# Model ID, default is None
MODEL_ID = os.getenv("MODEL_ID")

# Enable jupyter notebook server route, default is False
NOTEBOOK_ENABLED = str2bool(os.getenv("NOTEBOOK_ENABLED", False))

# Jupyter notebook password, default is "roboflow"
NOTEBOOK_PASSWORD = os.getenv("NOTEBOOK_PASSWORD", "roboflow")

# Jupyter notebook port, default is 9002
NOTEBOOK_PORT = int(os.getenv("NOTEBOOK_PORT", 9002))

# Number of workers, default is 1
NUM_WORKERS = int(os.getenv("NUM_WORKERS", 1))

ONNXRUNTIME_EXECUTION_PROVIDERS = os.getenv(
    "ONNXRUNTIME_EXECUTION_PROVIDERS", "[CUDAExecutionProvider,CPUExecutionProvider]"
)

# Port, default is 9001
PORT = int(os.getenv("PORT", 9001))

# Profile flag, default is False
PROFILE = str2bool(os.getenv("PROFILE", False))

# Redis host, default is None
REDIS_HOST = os.getenv("REDIS_HOST", None)

# Redis port, default is 6379
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379))
REDIS_SSL = str2bool(os.getenv("REDIS_SSL", False))
REDIS_TIMEOUT = float(os.getenv("REDIS_TIMEOUT", 2.0))

# Required ONNX providers, default is None
REQUIRED_ONNX_PROVIDERS = safe_split_value(os.getenv("REQUIRED_ONNX_PROVIDERS", None))

# Roboflow server UUID
ROBOFLOW_SERVER_UUID = os.getenv("ROBOFLOW_SERVER_UUID", str(uuid.uuid4()))

# Roboflow service secret, default is None
ROBOFLOW_SERVICE_SECRET = os.getenv("ROBOFLOW_SERVICE_SECRET", None)

# Maximum embedding cache size for SAM, default is 10
SAM_MAX_EMBEDDING_CACHE_SIZE = int(os.getenv("SAM_MAX_EMBEDDING_CACHE_SIZE", 10))

# SAM version ID, default is "vit_h"
SAM_VERSION_ID = os.getenv("SAM_VERSION_ID", "vit_h")


# Device ID, default is "sample-device-id"
INFERENCE_SERVER_ID = os.getenv("INFERENCE_SERVER_ID", None)

# Stream ID, default is None
STREAM_ID = os.getenv("STREAM_ID")
try:
    STREAM_ID = int(STREAM_ID)
except (TypeError, ValueError):
    pass

# Tags used for device management
TAGS = safe_split_value(os.getenv("TAGS", ""))

# TensorRT cache path, default is MODEL_CACHE_DIR
TENSORRT_CACHE_PATH = os.getenv("TENSORRT_CACHE_PATH", MODEL_CACHE_DIR)

# Set TensorRT cache path
os.environ["ORT_TENSORRT_CACHE_PATH"] = TENSORRT_CACHE_PATH

# Version check mode, one of "once" or "continuous", default is "once"
VERSION_CHECK_MODE = os.getenv("VERSION_CHECK_MODE", "once")

# Metlo key, default is None
METLO_KEY = os.getenv("METLO_KEY", None)

# Core model bucket
CORE_MODEL_BUCKET = os.getenv(
    "CORE_MODEL_BUCKET",
    (
        "roboflow-core-model-prod"
        if PROJECT == "roboflow-platform"
        else "roboflow-core-model-staging"
    ),
)

# Inference bucket
INFER_BUCKET = os.getenv(
    "INFER_BUCKET",
    (
        "roboflow-infer-prod"
        if PROJECT == "roboflow-platform"
        else "roboflow-infer-staging"
    ),
)

ACTIVE_LEARNING_ENABLED = str2bool(os.getenv("ACTIVE_LEARNING_ENABLED", True))
ACTIVE_LEARNING_TAGS = safe_split_value(os.getenv("ACTIVE_LEARNING_TAGS", None))

# Number inflight async tasks for async model manager
NUM_PARALLEL_TASKS = int(os.getenv("NUM_PARALLEL_TASKS", 512))
STUB_CACHE_SIZE = int(os.getenv("STUB_CACHE_SIZE", 256))
# New stream interface variables
PREDICTIONS_QUEUE_SIZE = int(
    os.getenv("INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE", 512)
)
RESTART_ATTEMPT_DELAY = int(os.getenv("INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY", 1))
DEFAULT_BUFFER_SIZE = int(os.getenv("VIDEO_SOURCE_BUFFER_SIZE", "64"))
DEFAULT_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE = float(
    os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE", "0.1")
)
DEFAULT_ADAPTIVE_MODE_READER_PACE_TOLERANCE = float(
    os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_READER_PACE_TOLERANCE", "5.0")
)
DEFAULT_MINIMUM_ADAPTIVE_MODE_SAMPLES = int(
    os.getenv("VIDEO_SOURCE_MINIMUM_ADAPTIVE_MODE_SAMPLES", "10")
)
DEFAULT_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW = int(
    os.getenv("VIDEO_SOURCE_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW", "16")
)

NUM_CELERY_WORKERS = os.getenv("NUM_CELERY_WORKERS", 4)
CELERY_LOG_LEVEL = os.getenv("CELERY_LOG_LEVEL", "WARNING")


LOCAL_INFERENCE_API_URL = os.getenv("LOCAL_INFERENCE_API_URL", "http://127.0.0.1:9001")
HOSTED_DETECT_URL = (
    "https://detect.roboflow.com"
    if PROJECT == "roboflow-platform"
    else "https://lambda-object-detection.staging.roboflow.com"
)
HOSTED_INSTANCE_SEGMENTATION_URL = (
    "https://outline.roboflow.com"
    if PROJECT == "roboflow-platform"
    else "https://lambda-instance-segmentation.staging.roboflow.com"
)
HOSTED_CLASSIFICATION_URL = (
    "https://classify.roboflow.com"
    if PROJECT == "roboflow-platform"
    else "https://lambda-classification.staging.roboflow.com"
)
HOSTED_CORE_MODEL_URL = (
    "https://infer.roboflow.com"
    if PROJECT == "roboflow-platform"
    else "https://3hkaykeh3j.execute-api.us-east-1.amazonaws.com"
)

DISABLE_WORKFLOW_ENDPOINTS = str2bool(os.getenv("DISABLE_WORKFLOW_ENDPOINTS", False))
WORKFLOWS_STEP_EXECUTION_MODE = os.getenv("WORKFLOWS_STEP_EXECUTION_MODE", "remote")
WORKFLOWS_REMOTE_API_TARGET = os.getenv("WORKFLOWS_REMOTE_API_TARGET", "hosted")
WORKFLOWS_MAX_CONCURRENT_STEPS = int(os.getenv("WORKFLOWS_MAX_CONCURRENT_STEPS", "8"))
WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE = int(
    os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE", "1")
)
WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS = int(
    os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS", "8")
)