Spaces:
Runtime error
Runtime error
File size: 12,767 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import uuid
from dotenv import load_dotenv
from inference.core.utils.environment import safe_split_value, str2bool
load_dotenv(os.getcwd() + "/.env")
# The project name, default is "roboflow-platform"
PROJECT = os.getenv("PROJECT", "roboflow-platform")
# Allow numpy input, default is True
ALLOW_NUMPY_INPUT = str2bool(os.getenv("ALLOW_NUMPY_INPUT", True))
# List of allowed origins
ALLOW_ORIGINS = os.getenv("ALLOW_ORIGINS", "")
ALLOW_ORIGINS = ALLOW_ORIGINS.split(",")
# Base URL for the API
API_BASE_URL = os.getenv(
"API_BASE_URL",
(
"https://api.roboflow.com"
if PROJECT == "roboflow-platform"
else "https://api.roboflow.one"
),
)
# Debug flag for the API, default is False
API_DEBUG = os.getenv("API_DEBUG", False)
# API key, default is None
API_KEY_ENV_NAMES = ["ROBOFLOW_API_KEY", "API_KEY"]
API_KEY = os.getenv(API_KEY_ENV_NAMES[0], None) or os.getenv(API_KEY_ENV_NAMES[1], None)
# AWS access key ID, default is None
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID", None)
# AWS secret access key, default is None
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY", None)
COGVLM_LOAD_4BIT = str2bool(os.getenv("COGVLM_LOAD_4BIT", True))
COGVLM_LOAD_8BIT = str2bool(os.getenv("COGVLM_LOAD_8BIT", False))
COGVLM_VERSION_ID = os.getenv("COGVLM_VERSION_ID", "cogvlm-chat-hf")
# CLIP version ID, default is "ViT-B-16"
CLIP_VERSION_ID = os.getenv("CLIP_VERSION_ID", "ViT-B-16")
# CLIP model ID
CLIP_MODEL_ID = f"clip/{CLIP_VERSION_ID}"
# Gaze version ID, default is "L2CS"
GAZE_VERSION_ID = os.getenv("GAZE_VERSION_ID", "L2CS")
# Gaze model ID
GAZE_MODEL_ID = f"gaze/{CLIP_VERSION_ID}"
# Maximum batch size for GAZE, default is 8
GAZE_MAX_BATCH_SIZE = int(os.getenv("GAZE_MAX_BATCH_SIZE", 8))
# If true, this will store a non-verbose version of the inference request and repsonse in the cache
TINY_CACHE = str2bool(os.getenv("TINY_CACHE", True))
# Maximum batch size for CLIP, default is 8
CLIP_MAX_BATCH_SIZE = int(os.getenv("CLIP_MAX_BATCH_SIZE", 8))
# Class agnostic NMS flag, default is False
CLASS_AGNOSTIC_NMS_ENV = "CLASS_AGNOSTIC_NMS"
DEFAULT_CLASS_AGNOSTIC_NMS = False
CLASS_AGNOSTIC_NMS = str2bool(
os.getenv(CLASS_AGNOSTIC_NMS_ENV, DEFAULT_CLASS_AGNOSTIC_NMS)
)
# Confidence threshold, default is 50%
CONFIDENCE_ENV = "CONFIDENCE"
DEFAULT_CONFIDENCE = 0.4
CONFIDENCE = float(os.getenv(CONFIDENCE_ENV, DEFAULT_CONFIDENCE))
# Flag to enable core models, default is True
CORE_MODELS_ENABLED = str2bool(os.getenv("CORE_MODELS_ENABLED", True))
# Flag to enable CLIP core model, default is True
CORE_MODEL_CLIP_ENABLED = str2bool(os.getenv("CORE_MODEL_CLIP_ENABLED", True))
# Flag to enable SAM core model, default is True
CORE_MODEL_SAM_ENABLED = str2bool(os.getenv("CORE_MODEL_SAM_ENABLED", True))
# Flag to enable GAZE core model, default is True
CORE_MODEL_GAZE_ENABLED = str2bool(os.getenv("CORE_MODEL_GAZE_ENABLED", True))
# Flag to enable DocTR core model, default is True
CORE_MODEL_DOCTR_ENABLED = str2bool(os.getenv("CORE_MODEL_DOCTR_ENABLED", True))
# Flag to enable GROUNDINGDINO core model, default is True
CORE_MODEL_GROUNDINGDINO_ENABLED = str2bool(
os.getenv("CORE_MODEL_GROUNDINGDINO_ENABLED", True)
)
# Flag to enable CogVLM core model, default is True
CORE_MODEL_COGVLM_ENABLED = str2bool(os.getenv("CORE_MODEL_COGVLM_ENABLED", True))
# Flag to enable YOLO-World core model, default is True
CORE_MODEL_YOLO_WORLD_ENABLED = str2bool(
os.getenv("CORE_MODEL_YOLO_WORLD_ENABLED", True)
)
# ID of host device, default is None
DEVICE_ID = os.getenv("DEVICE_ID", None)
# Flag to disable inference cache, default is False
DISABLE_INFERENCE_CACHE = str2bool(os.getenv("DISABLE_INFERENCE_CACHE", False))
# Flag to disable auto-orientation preprocessing, default is False
DISABLE_PREPROC_AUTO_ORIENT = str2bool(os.getenv("DISABLE_PREPROC_AUTO_ORIENT", False))
# Flag to disable contrast preprocessing, default is False
DISABLE_PREPROC_CONTRAST = str2bool(os.getenv("DISABLE_PREPROC_CONTRAST", False))
# Flag to disable grayscale preprocessing, default is False
DISABLE_PREPROC_GRAYSCALE = str2bool(os.getenv("DISABLE_PREPROC_GRAYSCALE", False))
# Flag to disable static crop preprocessing, default is False
DISABLE_PREPROC_STATIC_CROP = str2bool(os.getenv("DISABLE_PREPROC_STATIC_CROP", False))
# Flag to disable version check, default is False
DISABLE_VERSION_CHECK = str2bool(os.getenv("DISABLE_VERSION_CHECK", False))
# ElastiCache endpoint
ELASTICACHE_ENDPOINT = os.environ.get(
"ELASTICACHE_ENDPOINT",
(
"roboflow-infer-prod.ljzegl.cfg.use2.cache.amazonaws.com:11211"
if PROJECT == "roboflow-platform"
else "roboflow-infer.ljzegl.cfg.use2.cache.amazonaws.com:11211"
),
)
# Flag to enable byte track, default is False
ENABLE_BYTE_TRACK = str2bool(os.getenv("ENABLE_BYTE_TRACK", False))
# Flag to enforce FPS, default is False
ENFORCE_FPS = str2bool(os.getenv("ENFORCE_FPS", False))
MAX_FPS = os.getenv("MAX_FPS")
if MAX_FPS is not None:
MAX_FPS = int(MAX_FPS)
# Flag to fix batch size, default is False
FIX_BATCH_SIZE = str2bool(os.getenv("FIX_BATCH_SIZE", False))
# Host, default is "0.0.0.0"
HOST = os.getenv("HOST", "0.0.0.0")
# IoU threshold, default is 0.3
IOU_THRESHOLD_ENV = "IOU_THRESHOLD"
DEFAULT_IOU_THRESHOLD = 0.3
IOU_THRESHOLD = float(os.getenv(IOU_THRESHOLD_ENV, DEFAULT_IOU_THRESHOLD))
# IP broadcast address, default is "127.0.0.1"
IP_BROADCAST_ADDR = os.getenv("IP_BROADCAST_ADDR", "127.0.0.1")
# IP broadcast port, default is 37020
IP_BROADCAST_PORT = int(os.getenv("IP_BROADCAST_PORT", 37020))
# Flag to enable JSON response, default is True
JSON_RESPONSE = str2bool(os.getenv("JSON_RESPONSE", True))
# Lambda flag, default is False
LAMBDA = str2bool(os.getenv("LAMBDA", False))
# Flag to enable legacy route, default is True
LEGACY_ROUTE_ENABLED = str2bool(os.getenv("LEGACY_ROUTE_ENABLED", True))
# License server, default is None
LICENSE_SERVER = os.getenv("LICENSE_SERVER", None)
# Log level, default is "INFO"
LOG_LEVEL = os.getenv("LOG_LEVEL", "WARNING")
# Maximum number of active models, default is 8
MAX_ACTIVE_MODELS = int(os.getenv("MAX_ACTIVE_MODELS", 8))
# Maximum batch size, default is infinite
MAX_BATCH_SIZE = os.getenv("MAX_BATCH_SIZE", None)
if MAX_BATCH_SIZE is not None:
MAX_BATCH_SIZE = int(MAX_BATCH_SIZE)
else:
MAX_BATCH_SIZE = float("inf")
# Maximum number of candidates, default is 3000
MAX_CANDIDATES_ENV = "MAX_CANDIDATES"
DEFAULT_MAX_CANDIDATES = 3000
MAX_CANDIDATES = int(os.getenv(MAX_CANDIDATES_ENV, DEFAULT_MAX_CANDIDATES))
# Maximum number of detections, default is 300
MAX_DETECTIONS_ENV = "MAX_DETECTIONS"
DEFAULT_MAX_DETECTIONS = 300
MAX_DETECTIONS = int(os.getenv(MAX_DETECTIONS_ENV, DEFAULT_MAX_DETECTIONS))
# Loop interval for expiration of memory cache, default is 5
MEMORY_CACHE_EXPIRE_INTERVAL = int(os.getenv("MEMORY_CACHE_EXPIRE_INTERVAL", 5))
# Metrics enabled flag, default is True
METRICS_ENABLED = str2bool(os.getenv("METRICS_ENABLED", True))
if LAMBDA:
METRICS_ENABLED = False
# Interval for metrics aggregation, default is 60
METRICS_INTERVAL = int(os.getenv("METRICS_INTERVAL", 60))
# URL for posting metrics to Roboflow API, default is "{API_BASE_URL}/inference-stats"
METRICS_URL = os.getenv("METRICS_URL", f"{API_BASE_URL}/inference-stats")
# Model cache directory, default is "/tmp/cache"
MODEL_CACHE_DIR = os.getenv("MODEL_CACHE_DIR", "/tmp/cache")
# Model ID, default is None
MODEL_ID = os.getenv("MODEL_ID")
# Enable jupyter notebook server route, default is False
NOTEBOOK_ENABLED = str2bool(os.getenv("NOTEBOOK_ENABLED", False))
# Jupyter notebook password, default is "roboflow"
NOTEBOOK_PASSWORD = os.getenv("NOTEBOOK_PASSWORD", "roboflow")
# Jupyter notebook port, default is 9002
NOTEBOOK_PORT = int(os.getenv("NOTEBOOK_PORT", 9002))
# Number of workers, default is 1
NUM_WORKERS = int(os.getenv("NUM_WORKERS", 1))
ONNXRUNTIME_EXECUTION_PROVIDERS = os.getenv(
"ONNXRUNTIME_EXECUTION_PROVIDERS", "[CUDAExecutionProvider,CPUExecutionProvider]"
)
# Port, default is 9001
PORT = int(os.getenv("PORT", 9001))
# Profile flag, default is False
PROFILE = str2bool(os.getenv("PROFILE", False))
# Redis host, default is None
REDIS_HOST = os.getenv("REDIS_HOST", None)
# Redis port, default is 6379
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379))
REDIS_SSL = str2bool(os.getenv("REDIS_SSL", False))
REDIS_TIMEOUT = float(os.getenv("REDIS_TIMEOUT", 2.0))
# Required ONNX providers, default is None
REQUIRED_ONNX_PROVIDERS = safe_split_value(os.getenv("REQUIRED_ONNX_PROVIDERS", None))
# Roboflow server UUID
ROBOFLOW_SERVER_UUID = os.getenv("ROBOFLOW_SERVER_UUID", str(uuid.uuid4()))
# Roboflow service secret, default is None
ROBOFLOW_SERVICE_SECRET = os.getenv("ROBOFLOW_SERVICE_SECRET", None)
# Maximum embedding cache size for SAM, default is 10
SAM_MAX_EMBEDDING_CACHE_SIZE = int(os.getenv("SAM_MAX_EMBEDDING_CACHE_SIZE", 10))
# SAM version ID, default is "vit_h"
SAM_VERSION_ID = os.getenv("SAM_VERSION_ID", "vit_h")
# Device ID, default is "sample-device-id"
INFERENCE_SERVER_ID = os.getenv("INFERENCE_SERVER_ID", None)
# Stream ID, default is None
STREAM_ID = os.getenv("STREAM_ID")
try:
STREAM_ID = int(STREAM_ID)
except (TypeError, ValueError):
pass
# Tags used for device management
TAGS = safe_split_value(os.getenv("TAGS", ""))
# TensorRT cache path, default is MODEL_CACHE_DIR
TENSORRT_CACHE_PATH = os.getenv("TENSORRT_CACHE_PATH", MODEL_CACHE_DIR)
# Set TensorRT cache path
os.environ["ORT_TENSORRT_CACHE_PATH"] = TENSORRT_CACHE_PATH
# Version check mode, one of "once" or "continuous", default is "once"
VERSION_CHECK_MODE = os.getenv("VERSION_CHECK_MODE", "once")
# Metlo key, default is None
METLO_KEY = os.getenv("METLO_KEY", None)
# Core model bucket
CORE_MODEL_BUCKET = os.getenv(
"CORE_MODEL_BUCKET",
(
"roboflow-core-model-prod"
if PROJECT == "roboflow-platform"
else "roboflow-core-model-staging"
),
)
# Inference bucket
INFER_BUCKET = os.getenv(
"INFER_BUCKET",
(
"roboflow-infer-prod"
if PROJECT == "roboflow-platform"
else "roboflow-infer-staging"
),
)
ACTIVE_LEARNING_ENABLED = str2bool(os.getenv("ACTIVE_LEARNING_ENABLED", True))
ACTIVE_LEARNING_TAGS = safe_split_value(os.getenv("ACTIVE_LEARNING_TAGS", None))
# Number inflight async tasks for async model manager
NUM_PARALLEL_TASKS = int(os.getenv("NUM_PARALLEL_TASKS", 512))
STUB_CACHE_SIZE = int(os.getenv("STUB_CACHE_SIZE", 256))
# New stream interface variables
PREDICTIONS_QUEUE_SIZE = int(
os.getenv("INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE", 512)
)
RESTART_ATTEMPT_DELAY = int(os.getenv("INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY", 1))
DEFAULT_BUFFER_SIZE = int(os.getenv("VIDEO_SOURCE_BUFFER_SIZE", "64"))
DEFAULT_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE = float(
os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE", "0.1")
)
DEFAULT_ADAPTIVE_MODE_READER_PACE_TOLERANCE = float(
os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_READER_PACE_TOLERANCE", "5.0")
)
DEFAULT_MINIMUM_ADAPTIVE_MODE_SAMPLES = int(
os.getenv("VIDEO_SOURCE_MINIMUM_ADAPTIVE_MODE_SAMPLES", "10")
)
DEFAULT_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW = int(
os.getenv("VIDEO_SOURCE_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW", "16")
)
NUM_CELERY_WORKERS = os.getenv("NUM_CELERY_WORKERS", 4)
CELERY_LOG_LEVEL = os.getenv("CELERY_LOG_LEVEL", "WARNING")
LOCAL_INFERENCE_API_URL = os.getenv("LOCAL_INFERENCE_API_URL", "http://127.0.0.1:9001")
HOSTED_DETECT_URL = (
"https://detect.roboflow.com"
if PROJECT == "roboflow-platform"
else "https://lambda-object-detection.staging.roboflow.com"
)
HOSTED_INSTANCE_SEGMENTATION_URL = (
"https://outline.roboflow.com"
if PROJECT == "roboflow-platform"
else "https://lambda-instance-segmentation.staging.roboflow.com"
)
HOSTED_CLASSIFICATION_URL = (
"https://classify.roboflow.com"
if PROJECT == "roboflow-platform"
else "https://lambda-classification.staging.roboflow.com"
)
HOSTED_CORE_MODEL_URL = (
"https://infer.roboflow.com"
if PROJECT == "roboflow-platform"
else "https://3hkaykeh3j.execute-api.us-east-1.amazonaws.com"
)
DISABLE_WORKFLOW_ENDPOINTS = str2bool(os.getenv("DISABLE_WORKFLOW_ENDPOINTS", False))
WORKFLOWS_STEP_EXECUTION_MODE = os.getenv("WORKFLOWS_STEP_EXECUTION_MODE", "remote")
WORKFLOWS_REMOTE_API_TARGET = os.getenv("WORKFLOWS_REMOTE_API_TARGET", "hosted")
WORKFLOWS_MAX_CONCURRENT_STEPS = int(os.getenv("WORKFLOWS_MAX_CONCURRENT_STEPS", "8"))
WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE = int(
os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE", "1")
)
WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS = int(
os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS", "8")
)
|