Spaces:
Runtime error
Runtime error
File size: 14,257 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import binascii
import os
import pickle
import re
from enum import Enum
from io import BytesIO
from typing import Any, Optional, Tuple, Union
import cv2
import numpy as np
import pybase64
import requests
from _io import _IOBase
from PIL import Image
from requests import RequestException
from inference.core.entities.requests.inference import InferenceRequestImage
from inference.core.env import ALLOW_NUMPY_INPUT
from inference.core.exceptions import (
InputFormatInferenceFailed,
InputImageLoadError,
InvalidImageTypeDeclared,
InvalidNumpyInput,
)
from inference.core.utils.requests import api_key_safe_raise_for_status
BASE64_DATA_TYPE_PATTERN = re.compile(r"^data:image\/[a-z]+;base64,")
class ImageType(Enum):
BASE64 = "base64"
FILE = "file"
MULTIPART = "multipart"
NUMPY = "numpy"
NUMPY_OBJECT = "numpy_object"
PILLOW = "pil"
URL = "url"
def load_image_rgb(value: Any, disable_preproc_auto_orient: bool = False) -> np.ndarray:
np_image, is_bgr = load_image(
value=value, disable_preproc_auto_orient=disable_preproc_auto_orient
)
if is_bgr:
np_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
return np_image
def load_image(
value: Any,
disable_preproc_auto_orient: bool = False,
) -> Tuple[np.ndarray, bool]:
"""Loads an image based on the specified type and value.
Args:
value (Any): Image value which could be an instance of InferenceRequestImage,
a dict with 'type' and 'value' keys, or inferred based on the value's content.
Returns:
Image.Image: The loaded PIL image, converted to RGB.
Raises:
NotImplementedError: If the specified image type is not supported.
InvalidNumpyInput: If the numpy input method is used and the input data is invalid.
"""
cv_imread_flags = choose_image_decoding_flags(
disable_preproc_auto_orient=disable_preproc_auto_orient
)
value, image_type = extract_image_payload_and_type(value=value)
if image_type is not None:
np_image, is_bgr = load_image_with_known_type(
value=value,
image_type=image_type,
cv_imread_flags=cv_imread_flags,
)
else:
np_image, is_bgr = load_image_with_inferred_type(
value, cv_imread_flags=cv_imread_flags
)
np_image = convert_gray_image_to_bgr(image=np_image)
return np_image, is_bgr
def choose_image_decoding_flags(disable_preproc_auto_orient: bool) -> int:
"""Choose the appropriate OpenCV image decoding flags.
Args:
disable_preproc_auto_orient (bool): Flag to disable preprocessing auto-orientation.
Returns:
int: OpenCV image decoding flags.
"""
cv_imread_flags = cv2.IMREAD_COLOR
if disable_preproc_auto_orient:
cv_imread_flags = cv_imread_flags | cv2.IMREAD_IGNORE_ORIENTATION
return cv_imread_flags
def extract_image_payload_and_type(value: Any) -> Tuple[Any, Optional[ImageType]]:
"""Extract the image payload and type from the given value.
This function supports different types of image inputs (e.g., InferenceRequestImage, dict, etc.)
and extracts the relevant data and image type for further processing.
Args:
value (Any): The input value which can be an image or information to derive the image.
Returns:
Tuple[Any, Optional[ImageType]]: A tuple containing the extracted image data and the corresponding image type.
"""
image_type = None
if issubclass(type(value), InferenceRequestImage):
image_type = value.type
value = value.value
elif issubclass(type(value), dict):
image_type = value.get("type")
value = value.get("value")
allowed_payload_types = {e.value for e in ImageType}
if image_type is None:
return value, image_type
if image_type.lower() not in allowed_payload_types:
raise InvalidImageTypeDeclared(
f"Declared image type: {image_type.lower()} which is not in allowed types: {allowed_payload_types}."
)
return value, ImageType(image_type.lower())
def load_image_with_known_type(
value: Any,
image_type: ImageType,
cv_imread_flags: int = cv2.IMREAD_COLOR,
) -> Tuple[np.ndarray, bool]:
"""Load an image using the known image type.
Supports various image types (e.g., NUMPY, PILLOW, etc.) and loads them into a numpy array format.
Args:
value (Any): The image data.
image_type (ImageType): The type of the image.
cv_imread_flags (int): Flags used for OpenCV's imread function.
Returns:
Tuple[np.ndarray, bool]: A tuple of the loaded image as a numpy array and a boolean indicating if the image is in BGR format.
"""
if image_type is ImageType.NUMPY and not ALLOW_NUMPY_INPUT:
raise InvalidImageTypeDeclared(
f"NumPy image type is not supported in this configuration of `inference`."
)
loader = IMAGE_LOADERS[image_type]
is_bgr = True if image_type is not ImageType.PILLOW else False
image = loader(value, cv_imread_flags)
return image, is_bgr
def load_image_with_inferred_type(
value: Any,
cv_imread_flags: int = cv2.IMREAD_COLOR,
) -> Tuple[np.ndarray, bool]:
"""Load an image by inferring its type.
Args:
value (Any): The image data.
cv_imread_flags (int): Flags used for OpenCV's imread function.
Returns:
Tuple[np.ndarray, bool]: Loaded image as a numpy array and a boolean indicating if the image is in BGR format.
Raises:
NotImplementedError: If the image type could not be inferred.
"""
if isinstance(value, (np.ndarray, np.generic)):
validate_numpy_image(data=value)
return value, True
elif isinstance(value, Image.Image):
return np.asarray(value.convert("RGB")), False
elif isinstance(value, str) and (value.startswith("http")):
return load_image_from_url(value=value, cv_imread_flags=cv_imread_flags), True
elif isinstance(value, str) and os.path.isfile(value):
return cv2.imread(value, cv_imread_flags), True
else:
return attempt_loading_image_from_string(
value=value, cv_imread_flags=cv_imread_flags
)
def attempt_loading_image_from_string(
value: Union[str, bytes, bytearray, _IOBase],
cv_imread_flags: int = cv2.IMREAD_COLOR,
) -> Tuple[np.ndarray, bool]:
"""
Attempt to load an image from a string.
Args:
value (Union[str, bytes, bytearray, _IOBase]): The image data in string format.
cv_imread_flags (int): OpenCV flags used for image reading.
Returns:
Tuple[np.ndarray, bool]: A tuple of the loaded image in numpy array format and a boolean flag indicating if the image is in BGR format.
"""
try:
return load_image_base64(value=value, cv_imread_flags=cv_imread_flags), True
except:
pass
try:
return (
load_image_from_encoded_bytes(value=value, cv_imread_flags=cv_imread_flags),
True,
)
except:
pass
try:
return (
load_image_from_buffer(value=value, cv_imread_flags=cv_imread_flags),
True,
)
except:
pass
try:
return load_image_from_numpy_str(value=value), True
except InvalidNumpyInput as error:
raise InputFormatInferenceFailed(
"Input image format could not be inferred from string."
) from error
def load_image_base64(
value: Union[str, bytes], cv_imread_flags=cv2.IMREAD_COLOR
) -> np.ndarray:
"""Loads an image from a base64 encoded string using OpenCV.
Args:
value (str): Base64 encoded string representing the image.
Returns:
np.ndarray: The loaded image as a numpy array.
"""
# New routes accept images via json body (str), legacy routes accept bytes which need to be decoded as strings
if not isinstance(value, str):
value = value.decode("utf-8")
value = BASE64_DATA_TYPE_PATTERN.sub("", value)
value = pybase64.b64decode(value)
image_np = np.frombuffer(value, np.uint8)
result = cv2.imdecode(image_np, cv_imread_flags)
if result is None:
raise InputImageLoadError("Could not load valid image from base64 string.")
return result
def load_image_from_buffer(
value: _IOBase,
cv_imread_flags: int = cv2.IMREAD_COLOR,
) -> np.ndarray:
"""Loads an image from a multipart-encoded input.
Args:
value (Any): Multipart-encoded input representing the image.
Returns:
Image.Image: The loaded PIL image.
"""
value.seek(0)
image_np = np.frombuffer(value.read(), np.uint8)
result = cv2.imdecode(image_np, cv_imread_flags)
if result is None:
raise InputImageLoadError("Could not load valid image from buffer.")
return result
def load_image_from_numpy_str(value: Union[bytes, str]) -> np.ndarray:
"""Loads an image from a numpy array string.
Args:
value (Union[bytes, str]): Base64 string or byte sequence representing the pickled numpy array of the image.
Returns:
Image.Image: The loaded PIL image.
Raises:
InvalidNumpyInput: If the numpy data is invalid.
"""
try:
if isinstance(value, str):
value = pybase64.b64decode(value)
data = pickle.loads(value)
except (EOFError, TypeError, pickle.UnpicklingError, binascii.Error) as error:
raise InvalidNumpyInput(
f"Could not unpickle image data. Cause: {error}"
) from error
validate_numpy_image(data=data)
return data
def load_image_from_numpy_object(value: np.ndarray) -> np.ndarray:
validate_numpy_image(data=value)
return value
def validate_numpy_image(data: np.ndarray) -> None:
"""
Validate if the provided data is a valid numpy image.
Args:
data (np.ndarray): The numpy array representing an image.
Raises:
InvalidNumpyInput: If the provided data is not a valid numpy image.
"""
if not issubclass(type(data), np.ndarray):
raise InvalidNumpyInput(
f"Data provided as input could not be decoded into np.ndarray object."
)
if len(data.shape) != 3 and len(data.shape) != 2:
raise InvalidNumpyInput(
f"For image given as np.ndarray expected 2 or 3 dimensions, got {len(data.shape)} dimensions."
)
if data.shape[-1] != 3 and data.shape[-1] != 1:
raise InvalidNumpyInput(
f"For image given as np.ndarray expected 1 or 3 channels, got {data.shape[-1]} channels."
)
def load_image_from_url(
value: str, cv_imread_flags: int = cv2.IMREAD_COLOR
) -> np.ndarray:
"""Loads an image from a given URL.
Args:
value (str): URL of the image.
Returns:
Image.Image: The loaded PIL image.
"""
try:
response = requests.get(value, stream=True)
api_key_safe_raise_for_status(response=response)
return load_image_from_encoded_bytes(
value=response.content, cv_imread_flags=cv_imread_flags
)
except (RequestException, ConnectionError) as error:
raise InputImageLoadError(
f"Error while loading image from url: {value}. Details: {error}"
)
def load_image_from_encoded_bytes(
value: bytes, cv_imread_flags: int = cv2.IMREAD_COLOR
) -> np.ndarray:
"""
Load an image from encoded bytes.
Args:
value (bytes): The byte sequence representing the image.
cv_imread_flags (int): OpenCV flags used for image reading.
Returns:
np.ndarray: The loaded image as a numpy array.
"""
image_np = np.asarray(bytearray(value), dtype=np.uint8)
image = cv2.imdecode(image_np, cv_imread_flags)
if image is None:
raise InputImageLoadError(
f"Could not parse response content from url {value} into image."
)
return image
IMAGE_LOADERS = {
ImageType.BASE64: load_image_base64,
ImageType.FILE: cv2.imread,
ImageType.MULTIPART: load_image_from_buffer,
ImageType.NUMPY: lambda v, _: load_image_from_numpy_str(v),
ImageType.NUMPY_OBJECT: lambda v, _: load_image_from_numpy_object(v),
ImageType.PILLOW: lambda v, _: np.asarray(v.convert("RGB")),
ImageType.URL: load_image_from_url,
}
def convert_gray_image_to_bgr(image: np.ndarray) -> np.ndarray:
"""
Convert a grayscale image to BGR format.
Args:
image (np.ndarray): The grayscale image.
Returns:
np.ndarray: The converted BGR image.
"""
if len(image.shape) == 2 or image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
return image
def np_image_to_base64(image: np.ndarray) -> bytes:
"""
Convert a numpy image to a base64 encoded byte string.
Args:
image (np.ndarray): The numpy array representing an image.
Returns:
bytes: The base64 encoded image.
"""
image = Image.fromarray(image)
with BytesIO() as buffer:
image = image.convert("RGB")
image.save(buffer, format="JPEG")
buffer.seek(0)
return buffer.getvalue()
def xyxy_to_xywh(xyxy):
"""
Convert bounding box format from (xmin, ymin, xmax, ymax) to (xcenter, ycenter, width, height).
Args:
xyxy (List[int]): List containing the coordinates in (xmin, ymin, xmax, ymax) format.
Returns:
List[int]: List containing the converted coordinates in (xcenter, ycenter, width, height) format.
"""
x_temp = (xyxy[0] + xyxy[2]) / 2
y_temp = (xyxy[1] + xyxy[3]) / 2
w_temp = abs(xyxy[0] - xyxy[2])
h_temp = abs(xyxy[1] - xyxy[3])
return [int(x_temp), int(y_temp), int(w_temp), int(h_temp)]
def encode_image_to_jpeg_bytes(image: np.ndarray, jpeg_quality: int = 90) -> bytes:
"""
Encode a numpy image to JPEG format in bytes.
Args:
image (np.ndarray): The numpy array representing an image.
jpeg_quality (int): Quality of the JPEG image.
Returns:
bytes: The JPEG encoded image.
"""
encoding_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality]
_, img_encoded = cv2.imencode(".jpg", image, encoding_param)
return np.array(img_encoded).tobytes()
|