File size: 7,645 Bytes
df6c67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from typing import List, Optional, Tuple

import numpy as np

from inference.core.entities.responses.inference import (
    InferenceResponseImage,
    Keypoint,
    KeypointsDetectionInferenceResponse,
    KeypointsPrediction,
)
from inference.core.exceptions import ModelArtefactError
from inference.core.models.object_detection_base import (
    ObjectDetectionBaseOnnxRoboflowInferenceModel,
)
from inference.core.models.types import PreprocessReturnMetadata
from inference.core.models.utils.keypoints import model_keypoints_to_response
from inference.core.models.utils.validate import (
    get_num_classes_from_model_prediction_shape,
)
from inference.core.nms import w_np_non_max_suppression
from inference.core.utils.postprocess import post_process_bboxes, post_process_keypoints

DEFAULT_CONFIDENCE = 0.4
DEFAULT_IOU_THRESH = 0.3
DEFAULT_CLASS_AGNOSTIC_NMS = False
DEFAUlT_MAX_DETECTIONS = 300
DEFAULT_MAX_CANDIDATES = 3000


class KeypointsDetectionBaseOnnxRoboflowInferenceModel(
    ObjectDetectionBaseOnnxRoboflowInferenceModel
):
    """Roboflow ONNX Object detection model. This class implements an object detection specific infer method."""

    task_type = "keypoint-detection"

    def __init__(self, model_id: str, *args, **kwargs):
        super().__init__(model_id, *args, **kwargs)

    def get_infer_bucket_file_list(self) -> list:
        """Returns the list of files to be downloaded from the inference bucket for ONNX model.

        Returns:
            list: A list of filenames specific to ONNX models.
        """
        return ["environment.json", "class_names.txt", "keypoints_metadata.json"]

    def postprocess(
        self,
        predictions: Tuple[np.ndarray],
        preproc_return_metadata: PreprocessReturnMetadata,
        class_agnostic_nms=DEFAULT_CLASS_AGNOSTIC_NMS,
        confidence: float = DEFAULT_CONFIDENCE,
        iou_threshold: float = DEFAULT_IOU_THRESH,
        max_candidates: int = DEFAULT_MAX_CANDIDATES,
        max_detections: int = DEFAUlT_MAX_DETECTIONS,
        return_image_dims: bool = False,
        **kwargs,
    ) -> List[KeypointsDetectionInferenceResponse]:
        """Postprocesses the object detection predictions.

        Args:
            predictions (np.ndarray): Raw predictions from the model.
            img_dims (List[Tuple[int, int]]): Dimensions of the images.
            class_agnostic_nms (bool): Whether to apply class-agnostic non-max suppression. Default is False.
            confidence (float): Confidence threshold for filtering detections. Default is 0.5.
            iou_threshold (float): IoU threshold for non-max suppression. Default is 0.5.
            max_candidates (int): Maximum number of candidate detections. Default is 3000.
            max_detections (int): Maximum number of final detections. Default is 300.

        Returns:
            List[KeypointsDetectionInferenceResponse]: The post-processed predictions.
        """
        predictions = predictions[0]
        number_of_classes = len(self.get_class_names)
        num_masks = predictions.shape[2] - 5 - number_of_classes
        predictions = w_np_non_max_suppression(
            predictions,
            conf_thresh=confidence,
            iou_thresh=iou_threshold,
            class_agnostic=class_agnostic_nms,
            max_detections=max_detections,
            max_candidate_detections=max_candidates,
            num_masks=num_masks,
        )

        infer_shape = (self.img_size_h, self.img_size_w)
        img_dims = preproc_return_metadata["img_dims"]
        predictions = post_process_bboxes(
            predictions=predictions,
            infer_shape=infer_shape,
            img_dims=img_dims,
            preproc=self.preproc,
            resize_method=self.resize_method,
            disable_preproc_static_crop=preproc_return_metadata[
                "disable_preproc_static_crop"
            ],
        )
        predictions = post_process_keypoints(
            predictions=predictions,
            keypoints_start_index=-num_masks,
            infer_shape=infer_shape,
            img_dims=img_dims,
            preproc=self.preproc,
            resize_method=self.resize_method,
            disable_preproc_static_crop=preproc_return_metadata[
                "disable_preproc_static_crop"
            ],
        )
        return self.make_response(predictions, img_dims, **kwargs)

    def make_response(
        self,
        predictions: List[List[float]],
        img_dims: List[Tuple[int, int]],
        class_filter: Optional[List[str]] = None,
        *args,
        **kwargs,
    ) -> List[KeypointsDetectionInferenceResponse]:
        """Constructs object detection response objects based on predictions.

        Args:
            predictions (List[List[float]]): The list of predictions.
            img_dims (List[Tuple[int, int]]): Dimensions of the images.
            class_filter (Optional[List[str]]): A list of class names to filter, if provided.

        Returns:
            List[KeypointsDetectionInferenceResponse]: A list of response objects containing keypoints detection predictions.
        """
        if isinstance(img_dims, dict) and "img_dims" in img_dims:
            img_dims = img_dims["img_dims"]
        keypoint_confidence_threshold = 0.0
        if "request" in kwargs:
            keypoint_confidence_threshold = kwargs["request"].keypoint_confidence
        responses = [
            KeypointsDetectionInferenceResponse(
                predictions=[
                    KeypointsPrediction(
                        # Passing args as a dictionary here since one of the args is 'class' (a protected term in Python)
                        **{
                            "x": (pred[0] + pred[2]) / 2,
                            "y": (pred[1] + pred[3]) / 2,
                            "width": pred[2] - pred[0],
                            "height": pred[3] - pred[1],
                            "confidence": pred[4],
                            "class": self.class_names[int(pred[6])],
                            "class_id": int(pred[6]),
                            "keypoints": model_keypoints_to_response(
                                keypoints_metadata=self.keypoints_metadata,
                                keypoints=pred[7:],
                                predicted_object_class_id=int(
                                    pred[4 + len(self.get_class_names)]
                                ),
                                keypoint_confidence_threshold=keypoint_confidence_threshold,
                            ),
                        }
                    )
                    for pred in batch_predictions
                    if not class_filter
                    or self.class_names[int(pred[6])] in class_filter
                ],
                image=InferenceResponseImage(
                    width=img_dims[ind][1], height=img_dims[ind][0]
                ),
            )
            for ind, batch_predictions in enumerate(predictions)
        ]
        return responses

    def keypoints_count(self) -> int:
        raise NotImplementedError

    def validate_model_classes(self) -> None:
        num_keypoints = self.keypoints_count()
        output_shape = self.get_model_output_shape()
        num_classes = get_num_classes_from_model_prediction_shape(
            len_prediction=output_shape[2], keypoints=num_keypoints
        )
        if num_classes != self.num_classes:
            raise ValueError(
                f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})"
            )