Spaces:
Runtime error
Runtime error
File size: 10,930 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
"""
This module contains component intended to use in combination with `InferencePipeline` to ensure
observability. Please consider them internal details of implementation.
"""
from abc import ABC, abstractmethod
from collections import deque
from datetime import datetime
from typing import Any, Deque, Iterable, List, Optional, TypeVar
import supervision as sv
from inference.core.interfaces.camera.entities import StatusUpdate, UpdateSeverity
from inference.core.interfaces.camera.video_source import VideoSource
from inference.core.interfaces.stream.entities import (
LatencyMonitorReport,
ModelActivityEvent,
PipelineStateReport,
)
T = TypeVar("T")
MAX_LATENCY_CONTEXT = 64
MAX_UPDATES_CONTEXT = 512
class PipelineWatchDog(ABC):
def __init__(self):
pass
@abstractmethod
def register_video_source(self, video_source: VideoSource) -> None:
pass
@abstractmethod
def on_status_update(self, status_update: StatusUpdate) -> None:
pass
@abstractmethod
def on_model_preprocessing_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
@abstractmethod
def on_model_inference_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
@abstractmethod
def on_model_postprocessing_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
@abstractmethod
def on_model_prediction_ready(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
@abstractmethod
def get_report(self) -> Optional[PipelineStateReport]:
pass
class NullPipelineWatchdog(PipelineWatchDog):
def register_video_source(self, video_source: VideoSource) -> None:
pass
def on_status_update(self, status_update: StatusUpdate) -> None:
pass
def on_model_preprocessing_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
def on_model_inference_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
def on_model_postprocessing_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
def on_model_prediction_ready(
self, frame_timestamp: datetime, frame_id: int
) -> None:
pass
def get_report(self) -> Optional[PipelineStateReport]:
return None
class LatencyMonitor:
def __init__(self):
self._preprocessing_start_event: Optional[ModelActivityEvent] = None
self._inference_start_event: Optional[ModelActivityEvent] = None
self._postprocessing_start_event: Optional[ModelActivityEvent] = None
self._prediction_ready_event: Optional[ModelActivityEvent] = None
self._reports: Deque[LatencyMonitorReport] = deque(maxlen=MAX_LATENCY_CONTEXT)
def register_preprocessing_start(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._preprocessing_start_event = ModelActivityEvent(
event_timestamp=datetime.now(),
frame_id=frame_id,
frame_decoding_timestamp=frame_timestamp,
)
def register_inference_start(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._inference_start_event = ModelActivityEvent(
event_timestamp=datetime.now(),
frame_id=frame_id,
frame_decoding_timestamp=frame_timestamp,
)
def register_postprocessing_start(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._postprocessing_start_event = ModelActivityEvent(
event_timestamp=datetime.now(),
frame_id=frame_id,
frame_decoding_timestamp=frame_timestamp,
)
def register_prediction_ready(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._prediction_ready_event = ModelActivityEvent(
event_timestamp=datetime.now(),
frame_id=frame_id,
frame_decoding_timestamp=frame_timestamp,
)
self._generate_report()
def summarise_reports(self) -> LatencyMonitorReport:
avg_frame_decoding_latency = average_property_values(
examined_objects=self._reports, property_name="frame_decoding_latency"
)
avg_pre_processing_latency = average_property_values(
examined_objects=self._reports, property_name="pre_processing_latency"
)
avg_inference_latency = average_property_values(
examined_objects=self._reports, property_name="inference_latency"
)
avg_pos_processing_latency = average_property_values(
examined_objects=self._reports, property_name="post_processing_latency"
)
avg_model_latency = average_property_values(
examined_objects=self._reports, property_name="model_latency"
)
avg_e2e_latency = average_property_values(
examined_objects=self._reports, property_name="e2e_latency"
)
return LatencyMonitorReport(
frame_decoding_latency=avg_frame_decoding_latency,
pre_processing_latency=avg_pre_processing_latency,
inference_latency=avg_inference_latency,
post_processing_latency=avg_pos_processing_latency,
model_latency=avg_model_latency,
e2e_latency=avg_e2e_latency,
)
def _generate_report(self) -> None:
frame_decoding_latency = None
if self._preprocessing_start_event is not None:
frame_decoding_latency = (
self._preprocessing_start_event.event_timestamp
- self._preprocessing_start_event.frame_decoding_timestamp
).total_seconds()
event_pairs = [
(self._preprocessing_start_event, self._inference_start_event),
(self._inference_start_event, self._postprocessing_start_event),
(self._postprocessing_start_event, self._prediction_ready_event),
(self._preprocessing_start_event, self._prediction_ready_event),
]
event_pairs_results = []
for earlier_event, later_event in event_pairs:
latency = compute_events_latency(
earlier_event=earlier_event,
later_event=later_event,
)
event_pairs_results.append(latency)
(
pre_processing_latency,
inference_latency,
post_processing_latency,
model_latency,
) = event_pairs_results
e2e_latency = None
if self._prediction_ready_event is not None:
e2e_latency = (
self._prediction_ready_event.event_timestamp
- self._prediction_ready_event.frame_decoding_timestamp
).total_seconds()
self._reports.append(
LatencyMonitorReport(
frame_decoding_latency=frame_decoding_latency,
pre_processing_latency=pre_processing_latency,
inference_latency=inference_latency,
post_processing_latency=post_processing_latency,
model_latency=model_latency,
e2e_latency=e2e_latency,
)
)
def average_property_values(
examined_objects: Iterable, property_name: str
) -> Optional[float]:
values = get_not_empty_properties(
examined_objects=examined_objects, property_name=property_name
)
return safe_average(values=values)
def get_not_empty_properties(
examined_objects: Iterable, property_name: str
) -> List[Any]:
results = [
getattr(examined_object, property_name, None)
for examined_object in examined_objects
]
return [e for e in results if e is not None]
def safe_average(values: List[float]) -> Optional[float]:
if len(values) == 0:
return None
return sum(values) / len(values)
def compute_events_latency(
earlier_event: Optional[ModelActivityEvent],
later_event: Optional[ModelActivityEvent],
) -> Optional[float]:
if not are_events_compatible(events=[earlier_event, later_event]):
return None
return (later_event.event_timestamp - earlier_event.event_timestamp).total_seconds()
def are_events_compatible(events: List[Optional[ModelActivityEvent]]) -> bool:
if any(e is None for e in events):
return False
if len(events) == 0:
return False
frame_ids = [e.frame_id for e in events]
return all(e == frame_ids[0] for e in frame_ids)
class BasePipelineWatchDog(PipelineWatchDog):
"""
Implementation to be used from single inference thread, as it keeps
state assumed to represent status of consecutive stage of prediction process
in latency monitor.
"""
def __init__(self):
super().__init__()
self._video_source: Optional[VideoSource] = None
self._inference_throughput_monitor = sv.FPSMonitor()
self._latency_monitor = LatencyMonitor()
self._stream_updates = deque(maxlen=MAX_UPDATES_CONTEXT)
def register_video_source(self, video_source: VideoSource) -> None:
self._video_source = video_source
def on_status_update(self, status_update: StatusUpdate) -> None:
if status_update.severity.value <= UpdateSeverity.DEBUG.value:
return None
self._stream_updates.append(status_update)
def on_model_preprocessing_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._latency_monitor.register_preprocessing_start(
frame_timestamp=frame_timestamp, frame_id=frame_id
)
def on_model_inference_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._latency_monitor.register_inference_start(
frame_timestamp=frame_timestamp, frame_id=frame_id
)
def on_model_postprocessing_started(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._latency_monitor.register_postprocessing_start(
frame_timestamp=frame_timestamp, frame_id=frame_id
)
def on_model_prediction_ready(
self, frame_timestamp: datetime, frame_id: int
) -> None:
self._latency_monitor.register_prediction_ready(
frame_timestamp=frame_timestamp, frame_id=frame_id
)
self._inference_throughput_monitor.tick()
def get_report(self) -> PipelineStateReport:
source_metadata = None
if self._video_source is not None:
source_metadata = self._video_source.describe_source()
return PipelineStateReport(
video_source_status_updates=list(self._stream_updates),
latency_report=self._latency_monitor.summarise_reports(),
inference_throughput=self._inference_throughput_monitor(),
source_metadata=source_metadata,
)
|