File size: 13,268 Bytes
2eafbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import math
from time import perf_counter
from typing import List, Optional, Tuple, Union

import cv2
import mediapipe as mp
import numpy as np
import onnxruntime
import torch
import torch.nn as nn
import torchvision
from mediapipe.tasks.python.components.containers.bounding_box import BoundingBox
from mediapipe.tasks.python.components.containers.category import Category
from mediapipe.tasks.python.components.containers.detections import Detection
from torchvision import transforms

from inference.core.entities.requests.gaze import GazeDetectionInferenceRequest
from inference.core.entities.responses.gaze import (
    GazeDetectionInferenceResponse,
    GazeDetectionPrediction,
)
from inference.core.entities.responses.inference import FaceDetectionPrediction, Point
from inference.core.env import (
    GAZE_MAX_BATCH_SIZE,
    MODEL_CACHE_DIR,
    REQUIRED_ONNX_PROVIDERS,
    TENSORRT_CACHE_PATH,
)
from inference.core.exceptions import OnnxProviderNotAvailable
from inference.core.models.roboflow import OnnxRoboflowCoreModel
from inference.core.utils.image_utils import load_image_rgb
from inference.models.gaze.l2cs import L2CS


class Gaze(OnnxRoboflowCoreModel):
    """Roboflow ONNX Gaze model.

    This class is responsible for handling the ONNX Gaze model, including
    loading the model, preprocessing the input, and performing inference.

    Attributes:
        gaze_onnx_session (onnxruntime.InferenceSession): ONNX Runtime session for gaze detection inference.
    """

    def __init__(self, *args, **kwargs):
        """Initializes the Gaze with the given arguments and keyword arguments."""

        t1 = perf_counter()
        super().__init__(*args, **kwargs)
        # Create an ONNX Runtime Session with a list of execution providers in priority order. ORT attempts to load providers until one is successful. This keeps the code across devices identical.
        self.log("Creating inference sessions")

        # TODO: convert face detector (TensorflowLite) to ONNX model

        self.gaze_onnx_session = onnxruntime.InferenceSession(
            self.cache_file("L2CSNet_gaze360_resnet50_90bins.onnx"),
            providers=[
                (
                    "TensorrtExecutionProvider",
                    {
                        "trt_engine_cache_enable": True,
                        "trt_engine_cache_path": TENSORRT_CACHE_PATH,
                    },
                ),
                "CUDAExecutionProvider",
                "CPUExecutionProvider",
            ],
        )

        if REQUIRED_ONNX_PROVIDERS:
            available_providers = onnxruntime.get_available_providers()
            for provider in REQUIRED_ONNX_PROVIDERS:
                if provider not in available_providers:
                    raise OnnxProviderNotAvailable(
                        f"Required ONNX Execution Provider {provider} is not availble. Check that you are using the correct docker image on a supported device."
                    )

        # init face detector
        self.face_detector = mp.tasks.vision.FaceDetector.create_from_options(
            mp.tasks.vision.FaceDetectorOptions(
                base_options=mp.tasks.BaseOptions(
                    model_asset_path=self.cache_file("mediapipe_face_detector.tflite")
                ),
                running_mode=mp.tasks.vision.RunningMode.IMAGE,
            )
        )

        # additional settings for gaze detection
        self._gaze_transformations = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Resize(448),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )
        self.task_type = "gaze-detection"
        self.log(f"GAZE model loaded in {perf_counter() - t1:.2f} seconds")

    def _crop_face_img(self, np_img: np.ndarray, face: Detection) -> np.ndarray:
        """Extract facial area in an image.

        Args:
            np_img (np.ndarray): The numpy image.
            face (mediapipe.tasks.python.components.containers.detections.Detection): The detected face.

        Returns:
            np.ndarray: Cropped face image.
        """
        # extract face area
        bbox = face.bounding_box
        x_min = bbox.origin_x
        y_min = bbox.origin_y
        x_max = bbox.origin_x + bbox.width
        y_max = bbox.origin_y + bbox.height
        face_img = np_img[y_min:y_max, x_min:x_max, :]
        face_img = cv2.resize(face_img, (224, 224))
        return face_img

    def _detect_gaze(self, np_imgs: List[np.ndarray]) -> List[Tuple[float, float]]:
        """Detect faces and gazes in an image.

        Args:
            pil_imgs (List[np.ndarray]): The numpy image list, each image is a cropped facial image.

        Returns:
            List[Tuple[float, float]]: Yaw (radian) and Pitch (radian).
        """
        ret = []
        for i in range(0, len(np_imgs), GAZE_MAX_BATCH_SIZE):
            img_batch = []
            for j in range(i, min(len(np_imgs), i + GAZE_MAX_BATCH_SIZE)):
                img = self._gaze_transformations(np_imgs[j])
                img = np.expand_dims(img, axis=0).astype(np.float32)
                img_batch.append(img)

            img_batch = np.concatenate(img_batch, axis=0)
            onnx_input_image = {self.gaze_onnx_session.get_inputs()[0].name: img_batch}
            yaw, pitch = self.gaze_onnx_session.run(None, onnx_input_image)

            for j in range(len(img_batch)):
                ret.append((yaw[j], pitch[j]))

        return ret

    def _make_response(
        self,
        faces: List[Detection],
        gazes: List[Tuple[float, float]],
        imgW: int,
        imgH: int,
        time_total: float,
        time_face_det: float = None,
        time_gaze_det: float = None,
    ) -> GazeDetectionInferenceResponse:
        """Prepare response object from detected faces and corresponding gazes.

        Args:
            faces (List[Detection]): The detected faces.
            gazes (List[tuple(float, float)]): The detected gazes (yaw, pitch).
            imgW (int): The width (px) of original image.
            imgH (int): The height (px) of original image.
            time_total (float): The processing time.
            time_face_det (float): The processing time.
            time_gaze_det (float): The processing time.

        Returns:
            GazeDetectionInferenceResponse: The response object including the detected faces and gazes info.
        """
        predictions = []
        for face, gaze in zip(faces, gazes):
            landmarks = []
            for keypoint in face.keypoints:
                x = min(max(int(keypoint.x * imgW), 0), imgW - 1)
                y = min(max(int(keypoint.y * imgH), 0), imgH - 1)
                landmarks.append(Point(x=x, y=y))

            bbox = face.bounding_box
            x_center = bbox.origin_x + bbox.width / 2
            y_center = bbox.origin_y + bbox.height / 2
            score = face.categories[0].score

            prediction = GazeDetectionPrediction(
                face=FaceDetectionPrediction(
                    x=x_center,
                    y=y_center,
                    width=bbox.width,
                    height=bbox.height,
                    confidence=score,
                    class_name="face",
                    landmarks=landmarks,
                ),
                yaw=gaze[0],
                pitch=gaze[1],
            )
            predictions.append(prediction)

        response = GazeDetectionInferenceResponse(
            predictions=predictions,
            time=time_total,
            time_face_det=time_face_det,
            time_gaze_det=time_gaze_det,
        )
        return response

    def get_infer_bucket_file_list(self) -> List[str]:
        """Gets the list of files required for inference.

        Returns:
            List[str]: The list of file names.
        """
        return [
            "mediapipe_face_detector.tflite",
            "L2CSNet_gaze360_resnet50_90bins.onnx",
        ]

    def infer_from_request(
        self, request: GazeDetectionInferenceRequest
    ) -> List[GazeDetectionInferenceResponse]:
        """Detect faces and gazes in image(s).

        Args:
            request (GazeDetectionInferenceRequest): The request object containing the image.

        Returns:
            List[GazeDetectionInferenceResponse]: The list of response objects containing the faces and corresponding gazes.
        """
        if isinstance(request.image, list):
            if len(request.image) > GAZE_MAX_BATCH_SIZE:
                raise ValueError(
                    f"The maximum number of images that can be inferred with gaze detection at one time is {GAZE_MAX_BATCH_SIZE}"
                )
            imgs = request.image
        else:
            imgs = [request.image]

        time_total = perf_counter()

        # load pil images
        num_img = len(imgs)
        np_imgs = [load_image_rgb(img) for img in imgs]

        # face detection
        # TODO: face detection for batch
        time_face_det = perf_counter()
        faces = []
        for np_img in np_imgs:
            if request.do_run_face_detection:
                mp_img = mp.Image(
                    image_format=mp.ImageFormat.SRGB, data=np_img.astype(np.uint8)
                )
                faces_per_img = self.face_detector.detect(mp_img).detections
            else:
                faces_per_img = [
                    Detection(
                        bounding_box=BoundingBox(
                            origin_x=0,
                            origin_y=0,
                            width=np_img.shape[1],
                            height=np_img.shape[0],
                        ),
                        categories=[Category(score=1.0, category_name="face")],
                        keypoints=[],
                    )
                ]
            faces.append(faces_per_img)
        time_face_det = (perf_counter() - time_face_det) / num_img

        # gaze detection
        time_gaze_det = perf_counter()
        face_imgs = []
        for i, np_img in enumerate(np_imgs):
            if request.do_run_face_detection:
                face_imgs.extend(
                    [self._crop_face_img(np_img, face) for face in faces[i]]
                )
            else:
                face_imgs.append(cv2.resize(np_img, (224, 224)))
        gazes = self._detect_gaze(face_imgs)
        time_gaze_det = (perf_counter() - time_gaze_det) / num_img

        time_total = (perf_counter() - time_total) / num_img

        # prepare response
        response = []
        idx_gaze = 0
        for i in range(len(np_imgs)):
            imgH, imgW, _ = np_imgs[i].shape
            faces_per_img = faces[i]
            gazes_per_img = gazes[idx_gaze : idx_gaze + len(faces_per_img)]
            response.append(
                self._make_response(
                    faces_per_img, gazes_per_img, imgW, imgH, time_total
                )
            )

        return response


class L2C2Wrapper(L2CS):
    """Roboflow L2CS Gaze detection model.

    This class is responsible for converting L2CS model to ONNX model.
    It is ONLY intended for internal usage.

    Workflow:
        After training a L2CS model, create an instance of this wrapper class.
        Load the trained weights file, and save it as ONNX model.
    """

    def __init__(self):
        self.device = torch.device("cpu")
        self.num_bins = 90
        super().__init__(
            torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], self.num_bins
        )
        self._gaze_softmax = nn.Softmax(dim=1)
        self._gaze_idx_tensor = torch.FloatTensor([i for i in range(90)]).to(
            self.device
        )

    def forward(self, x):
        idx_tensor = torch.stack(
            [self._gaze_idx_tensor for i in range(x.shape[0])], dim=0
        )
        gaze_yaw, gaze_pitch = super().forward(x)

        yaw_predicted = self._gaze_softmax(gaze_yaw)
        yaw_radian = (
            (torch.sum(yaw_predicted * idx_tensor, dim=1) * 4 - 180) * np.pi / 180
        )

        pitch_predicted = self._gaze_softmax(gaze_pitch)
        pitch_radian = (
            (torch.sum(pitch_predicted * idx_tensor, dim=1) * 4 - 180) * np.pi / 180
        )

        return yaw_radian, pitch_radian

    def load_L2CS_model(
        self,
        file_path=f"{MODEL_CACHE_DIR}/gaze/L2CS/L2CSNet_gaze360_resnet50_90bins.pkl",
    ):
        super().load_state_dict(torch.load(file_path, map_location=self.device))
        super().to(self.device)

    def saveas_ONNX_model(
        self,
        file_path=f"{MODEL_CACHE_DIR}/gaze/L2CS/L2CSNet_gaze360_resnet50_90bins.onnx",
    ):
        dummy_input = torch.randn(1, 3, 448, 448)
        dynamic_axes = {
            "input": {0: "batch_size"},
            "output_yaw": {0: "batch_size"},
            "output_pitch": {0: "batch_size"},
        }
        torch.onnx.export(
            self,
            dummy_input,
            file_path,
            input_names=["input"],
            output_names=["output_yaw", "output_pitch"],
            dynamic_axes=dynamic_axes,
            verbose=False,
        )