Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,533 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
from copy import deepcopy
from typing import Dict, List, Tuple, Union
import cv2
import numpy as np
from inference.core.exceptions import PostProcessingError
from inference.core.utils.preprocess import (
STATIC_CROP_KEY,
static_crop_should_be_applied,
)
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> Union[np.number, np.ndarray]:
"""
Compute the cosine similarity between two vectors.
Args:
a (np.ndarray): Vector A.
b (np.ndarray): Vector B.
Returns:
float: Cosine similarity between vectors A and B.
"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def masks2poly(masks: np.ndarray) -> List[np.ndarray]:
"""Converts binary masks to polygonal segments.
Args:
masks (numpy.ndarray): A set of binary masks, where masks are multiplied by 255 and converted to uint8 type.
Returns:
list: A list of segments, where each segment is obtained by converting the corresponding mask.
"""
segments = []
masks = (masks * 255.0).astype(np.uint8)
for mask in masks:
segments.append(mask2poly(mask))
return segments
def mask2poly(mask: np.ndarray) -> np.ndarray:
"""
Find contours in the mask and return them as a float32 array.
Args:
mask (np.ndarray): A binary mask.
Returns:
np.ndarray: Contours represented as a float32 array.
"""
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
if contours:
contours = np.array(
contours[np.array([len(x) for x in contours]).argmax()]
).reshape(-1, 2)
else:
contours = np.zeros((0, 2))
return contours.astype("float32")
def post_process_bboxes(
predictions: List[List[List[float]]],
infer_shape: Tuple[int, int],
img_dims: List[Tuple[int, int]],
preproc: dict,
disable_preproc_static_crop: bool = False,
resize_method: str = "Stretch to",
) -> List[List[List[float]]]:
"""
Postprocesses each patch of detections by scaling them to the original image coordinates and by shifting them based on a static crop preproc (if applied).
Args:
predictions (List[List[List[float]]]): The predictions output from NMS, indices are: batch x prediction x [x1, y1, x2, y2, ...].
infer_shape (Tuple[int, int]): The shape of the inference image.
img_dims (List[Tuple[int, int]]): The dimensions of the original image for each batch, indices are: batch x [height, width].
preproc (dict): Preprocessing configuration dictionary.
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
resize_method (str, optional): Resize method for image. Defaults to "Stretch to".
Returns:
List[List[List[float]]]: The scaled and shifted predictions, indices are: batch x prediction x [x1, y1, x2, y2, ...].
"""
# Get static crop params
scaled_predictions = []
# Loop through batches
for i, batch_predictions in enumerate(predictions):
if len(batch_predictions) == 0:
scaled_predictions.append([])
continue
np_batch_predictions = np.array(batch_predictions)
# Get bboxes from predictions (x1,y1,x2,y2)
predicted_bboxes = np_batch_predictions[:, :4]
(crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
img_dims[i],
preproc,
disable_preproc_static_crop=disable_preproc_static_crop,
)
if resize_method == "Stretch to":
predicted_bboxes = stretch_bboxes(
predicted_bboxes=predicted_bboxes,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
elif (
resize_method == "Fit (black edges) in"
or resize_method == "Fit (white edges) in"
):
predicted_bboxes = undo_image_padding_for_predicted_boxes(
predicted_bboxes=predicted_bboxes,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
predicted_bboxes = clip_boxes_coordinates(
predicted_bboxes=predicted_bboxes,
origin_shape=origin_shape,
)
predicted_bboxes = shift_bboxes(
bboxes=predicted_bboxes,
shift_x=crop_shift_x,
shift_y=crop_shift_y,
)
np_batch_predictions[:, :4] = predicted_bboxes
scaled_predictions.append(np_batch_predictions.tolist())
return scaled_predictions
def stretch_bboxes(
predicted_bboxes: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
scale_height = origin_shape[0] / infer_shape[0]
scale_width = origin_shape[1] / infer_shape[1]
return scale_bboxes(
bboxes=predicted_bboxes,
scale_x=scale_width,
scale_y=scale_height,
)
def undo_image_padding_for_predicted_boxes(
predicted_bboxes: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
inter_h = round(origin_shape[0] * scale)
inter_w = round(origin_shape[1] * scale)
pad_x = (infer_shape[0] - inter_w) / 2
pad_y = (infer_shape[1] - inter_h) / 2
predicted_bboxes = shift_bboxes(
bboxes=predicted_bboxes, shift_x=-pad_x, shift_y=-pad_y
)
predicted_bboxes /= scale
return predicted_bboxes
def clip_boxes_coordinates(
predicted_bboxes: np.ndarray,
origin_shape: Tuple[int, int],
) -> np.ndarray:
predicted_bboxes[:, 0] = np.round(
np.clip(predicted_bboxes[:, 0], a_min=0, a_max=origin_shape[1])
)
predicted_bboxes[:, 2] = np.round(
np.clip(predicted_bboxes[:, 2], a_min=0, a_max=origin_shape[1])
)
predicted_bboxes[:, 1] = np.round(
np.clip(predicted_bboxes[:, 1], a_min=0, a_max=origin_shape[0])
)
predicted_bboxes[:, 3] = np.round(
np.clip(predicted_bboxes[:, 3], a_min=0, a_max=origin_shape[0])
)
return predicted_bboxes
def shift_bboxes(
bboxes: np.ndarray,
shift_x: Union[int, float],
shift_y: Union[int, float],
) -> np.ndarray:
bboxes[:, 0] += shift_x
bboxes[:, 2] += shift_x
bboxes[:, 1] += shift_y
bboxes[:, 3] += shift_y
return bboxes
def process_mask_accurate(
protos: np.ndarray,
masks_in: np.ndarray,
bboxes: np.ndarray,
shape: Tuple[int, int],
) -> np.ndarray:
"""Returns masks that are the size of the original image.
Args:
protos (numpy.ndarray): Prototype masks.
masks_in (numpy.ndarray): Input masks.
bboxes (numpy.ndarray): Bounding boxes.
shape (tuple): Target shape.
Returns:
numpy.ndarray: Processed masks.
"""
masks = preprocess_segmentation_masks(
protos=protos,
masks_in=masks_in,
shape=shape,
)
# Order = 1 -> bilinear
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=0)
masks = masks.transpose((1, 2, 0))
masks = cv2.resize(masks, (shape[1], shape[0]), cv2.INTER_LINEAR)
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=2)
masks = masks.transpose((2, 0, 1))
masks = crop_mask(masks, bboxes)
masks[masks < 0.5] = 0
return masks
def process_mask_tradeoff(
protos: np.ndarray,
masks_in: np.ndarray,
bboxes: np.ndarray,
shape: Tuple[int, int],
tradeoff_factor: float,
) -> np.ndarray:
"""Returns masks that are the size of the original image with a tradeoff factor applied.
Args:
protos (numpy.ndarray): Prototype masks.
masks_in (numpy.ndarray): Input masks.
bboxes (numpy.ndarray): Bounding boxes.
shape (tuple): Target shape.
tradeoff_factor (float): Tradeoff factor for resizing masks.
Returns:
numpy.ndarray: Processed masks.
"""
c, mh, mw = protos.shape # CHW
masks = preprocess_segmentation_masks(
protos=protos,
masks_in=masks_in,
shape=shape,
)
# Order = 1 -> bilinear
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=0)
masks = masks.transpose((1, 2, 0))
ih, iw = shape
h = int(mh * (1 - tradeoff_factor) + ih * tradeoff_factor)
w = int(mw * (1 - tradeoff_factor) + iw * tradeoff_factor)
size = (h, w)
if tradeoff_factor != 0:
masks = cv2.resize(masks, size, cv2.INTER_LINEAR)
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=2)
masks = masks.transpose((2, 0, 1))
c, mh, mw = masks.shape
down_sampled_boxes = scale_bboxes(
bboxes=deepcopy(bboxes),
scale_x=mw / iw,
scale_y=mh / ih,
)
masks = crop_mask(masks, down_sampled_boxes)
masks[masks < 0.5] = 0
return masks
def process_mask_fast(
protos: np.ndarray,
masks_in: np.ndarray,
bboxes: np.ndarray,
shape: Tuple[int, int],
) -> np.ndarray:
"""Returns masks in their original size.
Args:
protos (numpy.ndarray): Prototype masks.
masks_in (numpy.ndarray): Input masks.
bboxes (numpy.ndarray): Bounding boxes.
shape (tuple): Target shape.
Returns:
numpy.ndarray: Processed masks.
"""
ih, iw = shape
c, mh, mw = protos.shape # CHW
masks = preprocess_segmentation_masks(
protos=protos,
masks_in=masks_in,
shape=shape,
)
down_sampled_boxes = scale_bboxes(
bboxes=deepcopy(bboxes),
scale_x=mw / iw,
scale_y=mh / ih,
)
masks = crop_mask(masks, down_sampled_boxes)
masks[masks < 0.5] = 0
return masks
def preprocess_segmentation_masks(
protos: np.ndarray,
masks_in: np.ndarray,
shape: Tuple[int, int],
) -> np.ndarray:
c, mh, mw = protos.shape # CHW
masks = protos.astype(np.float32)
masks = masks.reshape((c, -1))
masks = masks_in @ masks
masks = sigmoid(masks)
masks = masks.reshape((-1, mh, mw))
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(mh - pad[1]), int(mw - pad[0])
return masks[:, top:bottom, left:right]
def scale_bboxes(bboxes: np.ndarray, scale_x: float, scale_y: float) -> np.ndarray:
bboxes[:, 0] *= scale_x
bboxes[:, 2] *= scale_x
bboxes[:, 1] *= scale_y
bboxes[:, 3] *= scale_y
return bboxes
def crop_mask(masks: np.ndarray, boxes: np.ndarray) -> np.ndarray:
"""
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
Vectorized by Chong (thanks Chong).
Args:
- masks should be a size [h, w, n] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""
n, h, w = masks.shape
x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = np.arange(w, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = np.arange(h, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
masks = masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
return masks
def post_process_polygons(
origin_shape: Tuple[int, int],
polys: List[List[Tuple[float, float]]],
infer_shape: Tuple[int, int],
preproc: dict,
resize_method: str = "Stretch to",
) -> List[List[Tuple[float, float]]]:
"""Scales and shifts polygons based on the given image shapes and preprocessing method.
This function performs polygon scaling and shifting based on the specified resizing method and
pre-processing steps. The polygons are transformed according to the ratio and padding between two images.
Args:
origin_shape (tuple of int): Shape of the source image (height, width).
infer_shape (tuple of int): Shape of the target image (height, width).
polys (list of list of tuple): List of polygons, where each polygon is represented by a list of (x, y) coordinates.
preproc (object): Preprocessing details used for generating the transformation.
resize_method (str, optional): Resizing method, either "Stretch to", "Fit (black edges) in", or "Fit (white edges) in". Defaults to "Stretch to".
Returns:
list of list of tuple: A list of shifted and scaled polygons.
"""
(crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
origin_shape, preproc
)
new_polys = []
if resize_method == "Stretch to":
width_ratio = origin_shape[1] / infer_shape[1]
height_ratio = origin_shape[0] / infer_shape[0]
new_polys = scale_polygons(
polygons=polys,
x_scale=width_ratio,
y_scale=height_ratio,
)
elif resize_method in {"Fit (black edges) in", "Fit (white edges) in"}:
new_polys = undo_image_padding_for_predicted_polygons(
polygons=polys,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
shifted_polys = []
for poly in new_polys:
poly = [(p[0] + crop_shift_x, p[1] + crop_shift_y) for p in poly]
shifted_polys.append(poly)
return shifted_polys
def scale_polygons(
polygons: List[List[Tuple[float, float]]],
x_scale: float,
y_scale: float,
) -> List[List[Tuple[float, float]]]:
result = []
for poly in polygons:
poly = [(p[0] * x_scale, p[1] * y_scale) for p in poly]
result.append(poly)
return result
def undo_image_padding_for_predicted_polygons(
polygons: List[List[Tuple[float, float]]],
origin_shape: Tuple[int, int],
infer_shape: Tuple[int, int],
) -> List[List[Tuple[float, float]]]:
scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
inter_w = int(origin_shape[1] * scale)
inter_h = int(origin_shape[0] * scale)
pad_x = (infer_shape[1] - inter_w) / 2
pad_y = (infer_shape[0] - inter_h) / 2
result = []
for poly in polygons:
poly = [((p[0] - pad_x) / scale, (p[1] - pad_y) / scale) for p in poly]
result.append(poly)
return result
def get_static_crop_dimensions(
orig_shape: Tuple[int, int],
preproc: dict,
disable_preproc_static_crop: bool = False,
) -> Tuple[Tuple[int, int], Tuple[int, int]]:
"""
Generates a transformation based on preprocessing configuration.
Args:
orig_shape (tuple): The original shape of the object (e.g., image) - (height, width).
preproc (dict): Preprocessing configuration dictionary, containing information such as static cropping.
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
Returns:
tuple: A tuple containing the shift in the x and y directions, and the updated original shape after cropping.
"""
try:
if static_crop_should_be_applied(
preprocessing_config=preproc,
disable_preproc_static_crop=disable_preproc_static_crop,
):
x_min, y_min, x_max, y_max = standardise_static_crop(
static_crop_config=preproc[STATIC_CROP_KEY]
)
else:
x_min, y_min, x_max, y_max = 0, 0, 1, 1
crop_shift_x, crop_shift_y = (
round(x_min * orig_shape[1]),
round(y_min * orig_shape[0]),
)
cropped_percent_x = x_max - x_min
cropped_percent_y = y_max - y_min
orig_shape = (
round(orig_shape[0] * cropped_percent_y),
round(orig_shape[1] * cropped_percent_x),
)
return (crop_shift_x, crop_shift_y), orig_shape
except KeyError as error:
raise PostProcessingError(
f"Could not find a proper configuration key {error} in post-processing."
)
def standardise_static_crop(
static_crop_config: Dict[str, int]
) -> Tuple[float, float, float, float]:
return tuple(static_crop_config[key] / 100 for key in ["x_min", "y_min", "x_max", "y_max"]) # type: ignore
def post_process_keypoints(
predictions: List[List[List[float]]],
keypoints_start_index: int,
infer_shape: Tuple[int, int],
img_dims: List[Tuple[int, int]],
preproc: dict,
disable_preproc_static_crop: bool = False,
resize_method: str = "Stretch to",
) -> List[List[List[float]]]:
"""Scales and shifts keypoints based on the given image shapes and preprocessing method.
This function performs polygon scaling and shifting based on the specified resizing method and
pre-processing steps. The polygons are transformed according to the ratio and padding between two images.
Args:
predictions: predictions from model
keypoints_start_index: offset in the 3rd dimension pointing where in the prediction start keypoints [(x, y, cfg), ...] for each keypoint class
img_dims list of (tuple of int): Shape of the source image (height, width).
infer_shape (tuple of int): Shape of the target image (height, width).
preproc (object): Preprocessing details used for generating the transformation.
resize_method (str, optional): Resizing method, either "Stretch to", "Fit (black edges) in", or "Fit (white edges) in". Defaults to "Stretch to".
disable_preproc_static_crop: flag to disable static crop
Returns:
list of list of list: predictions with post-processed keypoints
"""
# Get static crop params
scaled_predictions = []
# Loop through batches
for i, batch_predictions in enumerate(predictions):
if len(batch_predictions) == 0:
scaled_predictions.append([])
continue
np_batch_predictions = np.array(batch_predictions)
keypoints = np_batch_predictions[:, keypoints_start_index:]
(crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
img_dims[i],
preproc,
disable_preproc_static_crop=disable_preproc_static_crop,
)
if resize_method == "Stretch to":
keypoints = stretch_keypoints(
keypoints=keypoints,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
elif (
resize_method == "Fit (black edges) in"
or resize_method == "Fit (white edges) in"
):
keypoints = undo_image_padding_for_predicted_keypoints(
keypoints=keypoints,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
keypoints = clip_keypoints_coordinates(
keypoints=keypoints, origin_shape=origin_shape
)
keypoints = shift_keypoints(
keypoints=keypoints, shift_x=crop_shift_x, shift_y=crop_shift_y
)
np_batch_predictions[:, keypoints_start_index:] = keypoints
scaled_predictions.append(np_batch_predictions.tolist())
return scaled_predictions
def stretch_keypoints(
keypoints: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
scale_width = origin_shape[1] / infer_shape[1]
scale_height = origin_shape[0] / infer_shape[0]
for keypoint_id in range(keypoints.shape[1] // 3):
keypoints[:, keypoint_id * 3] *= scale_width
keypoints[:, keypoint_id * 3 + 1] *= scale_height
return keypoints
def undo_image_padding_for_predicted_keypoints(
keypoints: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
# Undo scaling and padding from letterbox resize preproc operation
scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
inter_w = int(origin_shape[1] * scale)
inter_h = int(origin_shape[0] * scale)
pad_x = (infer_shape[1] - inter_w) / 2
pad_y = (infer_shape[0] - inter_h) / 2
for coord_id in range(keypoints.shape[1] // 3):
keypoints[:, coord_id * 3] -= pad_x
keypoints[:, coord_id * 3] /= scale
keypoints[:, coord_id * 3 + 1] -= pad_y
keypoints[:, coord_id * 3 + 1] /= scale
return keypoints
def clip_keypoints_coordinates(
keypoints: np.ndarray,
origin_shape: Tuple[int, int],
) -> np.ndarray:
for keypoint_id in range(keypoints.shape[1] // 3):
keypoints[:, keypoint_id * 3] = np.round(
np.clip(keypoints[:, keypoint_id * 3], a_min=0, a_max=origin_shape[1])
)
keypoints[:, keypoint_id * 3 + 1] = np.round(
np.clip(keypoints[:, keypoint_id * 3 + 1], a_min=0, a_max=origin_shape[0])
)
return keypoints
def shift_keypoints(
keypoints: np.ndarray,
shift_x: Union[int, float],
shift_y: Union[int, float],
) -> np.ndarray:
for keypoint_id in range(keypoints.shape[1] // 3):
keypoints[:, keypoint_id * 3] += shift_x
keypoints[:, keypoint_id * 3 + 1] += shift_y
return keypoints
def sigmoid(x: Union[float, np.ndarray]) -> Union[float, np.number, np.ndarray]:
"""Computes the sigmoid function for the given input.
The sigmoid function is defined as:
f(x) = 1 / (1 + exp(-x))
Args:
x (float or numpy.ndarray): Input value or array for which the sigmoid function is to be computed.
Returns:
float or numpy.ndarray: The computed sigmoid value(s).
"""
return 1 / (1 + np.exp(-x))
|