File size: 21,533 Bytes
2eafbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
from copy import deepcopy
from typing import Dict, List, Tuple, Union

import cv2
import numpy as np

from inference.core.exceptions import PostProcessingError
from inference.core.utils.preprocess import (
    STATIC_CROP_KEY,
    static_crop_should_be_applied,
)


def cosine_similarity(a: np.ndarray, b: np.ndarray) -> Union[np.number, np.ndarray]:
    """
    Compute the cosine similarity between two vectors.

    Args:
        a (np.ndarray): Vector A.
        b (np.ndarray): Vector B.

    Returns:
        float: Cosine similarity between vectors A and B.
    """
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))


def masks2poly(masks: np.ndarray) -> List[np.ndarray]:
    """Converts binary masks to polygonal segments.

    Args:
        masks (numpy.ndarray): A set of binary masks, where masks are multiplied by 255 and converted to uint8 type.

    Returns:
        list: A list of segments, where each segment is obtained by converting the corresponding mask.
    """
    segments = []
    masks = (masks * 255.0).astype(np.uint8)
    for mask in masks:
        segments.append(mask2poly(mask))
    return segments


def mask2poly(mask: np.ndarray) -> np.ndarray:
    """
    Find contours in the mask and return them as a float32 array.

    Args:
        mask (np.ndarray): A binary mask.

    Returns:
        np.ndarray: Contours represented as a float32 array.
    """
    contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
    if contours:
        contours = np.array(
            contours[np.array([len(x) for x in contours]).argmax()]
        ).reshape(-1, 2)
    else:
        contours = np.zeros((0, 2))
    return contours.astype("float32")


def post_process_bboxes(
    predictions: List[List[List[float]]],
    infer_shape: Tuple[int, int],
    img_dims: List[Tuple[int, int]],
    preproc: dict,
    disable_preproc_static_crop: bool = False,
    resize_method: str = "Stretch to",
) -> List[List[List[float]]]:
    """
    Postprocesses each patch of detections by scaling them to the original image coordinates and by shifting them based on a static crop preproc (if applied).

    Args:
        predictions (List[List[List[float]]]): The predictions output from NMS, indices are: batch x prediction x [x1, y1, x2, y2, ...].
        infer_shape (Tuple[int, int]): The shape of the inference image.
        img_dims (List[Tuple[int, int]]): The dimensions of the original image for each batch, indices are: batch x [height, width].
        preproc (dict): Preprocessing configuration dictionary.
        disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
        resize_method (str, optional): Resize method for image. Defaults to "Stretch to".

    Returns:
        List[List[List[float]]]: The scaled and shifted predictions, indices are: batch x prediction x [x1, y1, x2, y2, ...].
    """

    # Get static crop params
    scaled_predictions = []
    # Loop through batches
    for i, batch_predictions in enumerate(predictions):
        if len(batch_predictions) == 0:
            scaled_predictions.append([])
            continue
        np_batch_predictions = np.array(batch_predictions)
        # Get bboxes from predictions (x1,y1,x2,y2)
        predicted_bboxes = np_batch_predictions[:, :4]
        (crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
            img_dims[i],
            preproc,
            disable_preproc_static_crop=disable_preproc_static_crop,
        )
        if resize_method == "Stretch to":
            predicted_bboxes = stretch_bboxes(
                predicted_bboxes=predicted_bboxes,
                infer_shape=infer_shape,
                origin_shape=origin_shape,
            )
        elif (
            resize_method == "Fit (black edges) in"
            or resize_method == "Fit (white edges) in"
        ):
            predicted_bboxes = undo_image_padding_for_predicted_boxes(
                predicted_bboxes=predicted_bboxes,
                infer_shape=infer_shape,
                origin_shape=origin_shape,
            )
        predicted_bboxes = clip_boxes_coordinates(
            predicted_bboxes=predicted_bboxes,
            origin_shape=origin_shape,
        )
        predicted_bboxes = shift_bboxes(
            bboxes=predicted_bboxes,
            shift_x=crop_shift_x,
            shift_y=crop_shift_y,
        )
        np_batch_predictions[:, :4] = predicted_bboxes
        scaled_predictions.append(np_batch_predictions.tolist())
    return scaled_predictions


def stretch_bboxes(
    predicted_bboxes: np.ndarray,
    infer_shape: Tuple[int, int],
    origin_shape: Tuple[int, int],
) -> np.ndarray:
    scale_height = origin_shape[0] / infer_shape[0]
    scale_width = origin_shape[1] / infer_shape[1]
    return scale_bboxes(
        bboxes=predicted_bboxes,
        scale_x=scale_width,
        scale_y=scale_height,
    )


def undo_image_padding_for_predicted_boxes(
    predicted_bboxes: np.ndarray,
    infer_shape: Tuple[int, int],
    origin_shape: Tuple[int, int],
) -> np.ndarray:
    scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
    inter_h = round(origin_shape[0] * scale)
    inter_w = round(origin_shape[1] * scale)
    pad_x = (infer_shape[0] - inter_w) / 2
    pad_y = (infer_shape[1] - inter_h) / 2
    predicted_bboxes = shift_bboxes(
        bboxes=predicted_bboxes, shift_x=-pad_x, shift_y=-pad_y
    )
    predicted_bboxes /= scale
    return predicted_bboxes


def clip_boxes_coordinates(
    predicted_bboxes: np.ndarray,
    origin_shape: Tuple[int, int],
) -> np.ndarray:
    predicted_bboxes[:, 0] = np.round(
        np.clip(predicted_bboxes[:, 0], a_min=0, a_max=origin_shape[1])
    )
    predicted_bboxes[:, 2] = np.round(
        np.clip(predicted_bboxes[:, 2], a_min=0, a_max=origin_shape[1])
    )
    predicted_bboxes[:, 1] = np.round(
        np.clip(predicted_bboxes[:, 1], a_min=0, a_max=origin_shape[0])
    )
    predicted_bboxes[:, 3] = np.round(
        np.clip(predicted_bboxes[:, 3], a_min=0, a_max=origin_shape[0])
    )
    return predicted_bboxes


def shift_bboxes(
    bboxes: np.ndarray,
    shift_x: Union[int, float],
    shift_y: Union[int, float],
) -> np.ndarray:
    bboxes[:, 0] += shift_x
    bboxes[:, 2] += shift_x
    bboxes[:, 1] += shift_y
    bboxes[:, 3] += shift_y
    return bboxes


def process_mask_accurate(
    protos: np.ndarray,
    masks_in: np.ndarray,
    bboxes: np.ndarray,
    shape: Tuple[int, int],
) -> np.ndarray:
    """Returns masks that are the size of the original image.

    Args:
        protos (numpy.ndarray): Prototype masks.
        masks_in (numpy.ndarray): Input masks.
        bboxes (numpy.ndarray): Bounding boxes.
        shape (tuple): Target shape.

    Returns:
        numpy.ndarray: Processed masks.
    """
    masks = preprocess_segmentation_masks(
        protos=protos,
        masks_in=masks_in,
        shape=shape,
    )

    # Order = 1 -> bilinear
    if len(masks.shape) == 2:
        masks = np.expand_dims(masks, axis=0)
    masks = masks.transpose((1, 2, 0))
    masks = cv2.resize(masks, (shape[1], shape[0]), cv2.INTER_LINEAR)
    if len(masks.shape) == 2:
        masks = np.expand_dims(masks, axis=2)
    masks = masks.transpose((2, 0, 1))
    masks = crop_mask(masks, bboxes)
    masks[masks < 0.5] = 0
    return masks


def process_mask_tradeoff(
    protos: np.ndarray,
    masks_in: np.ndarray,
    bboxes: np.ndarray,
    shape: Tuple[int, int],
    tradeoff_factor: float,
) -> np.ndarray:
    """Returns masks that are the size of the original image with a tradeoff factor applied.

    Args:
        protos (numpy.ndarray): Prototype masks.
        masks_in (numpy.ndarray): Input masks.
        bboxes (numpy.ndarray): Bounding boxes.
        shape (tuple): Target shape.
        tradeoff_factor (float): Tradeoff factor for resizing masks.

    Returns:
        numpy.ndarray: Processed masks.
    """
    c, mh, mw = protos.shape  # CHW
    masks = preprocess_segmentation_masks(
        protos=protos,
        masks_in=masks_in,
        shape=shape,
    )

    # Order = 1 -> bilinear
    if len(masks.shape) == 2:
        masks = np.expand_dims(masks, axis=0)
    masks = masks.transpose((1, 2, 0))
    ih, iw = shape
    h = int(mh * (1 - tradeoff_factor) + ih * tradeoff_factor)
    w = int(mw * (1 - tradeoff_factor) + iw * tradeoff_factor)
    size = (h, w)
    if tradeoff_factor != 0:
        masks = cv2.resize(masks, size, cv2.INTER_LINEAR)
    if len(masks.shape) == 2:
        masks = np.expand_dims(masks, axis=2)
    masks = masks.transpose((2, 0, 1))
    c, mh, mw = masks.shape
    down_sampled_boxes = scale_bboxes(
        bboxes=deepcopy(bboxes),
        scale_x=mw / iw,
        scale_y=mh / ih,
    )
    masks = crop_mask(masks, down_sampled_boxes)
    masks[masks < 0.5] = 0
    return masks


def process_mask_fast(
    protos: np.ndarray,
    masks_in: np.ndarray,
    bboxes: np.ndarray,
    shape: Tuple[int, int],
) -> np.ndarray:
    """Returns masks in their original size.

    Args:
        protos (numpy.ndarray): Prototype masks.
        masks_in (numpy.ndarray): Input masks.
        bboxes (numpy.ndarray): Bounding boxes.
        shape (tuple): Target shape.

    Returns:
        numpy.ndarray: Processed masks.
    """
    ih, iw = shape
    c, mh, mw = protos.shape  # CHW
    masks = preprocess_segmentation_masks(
        protos=protos,
        masks_in=masks_in,
        shape=shape,
    )
    down_sampled_boxes = scale_bboxes(
        bboxes=deepcopy(bboxes),
        scale_x=mw / iw,
        scale_y=mh / ih,
    )
    masks = crop_mask(masks, down_sampled_boxes)
    masks[masks < 0.5] = 0
    return masks


def preprocess_segmentation_masks(
    protos: np.ndarray,
    masks_in: np.ndarray,
    shape: Tuple[int, int],
) -> np.ndarray:
    c, mh, mw = protos.shape  # CHW
    masks = protos.astype(np.float32)
    masks = masks.reshape((c, -1))
    masks = masks_in @ masks
    masks = sigmoid(masks)
    masks = masks.reshape((-1, mh, mw))
    gain = min(mh / shape[0], mw / shape[1])  # gain  = old / new
    pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2  # wh padding
    top, left = int(pad[1]), int(pad[0])  # y, x
    bottom, right = int(mh - pad[1]), int(mw - pad[0])
    return masks[:, top:bottom, left:right]


def scale_bboxes(bboxes: np.ndarray, scale_x: float, scale_y: float) -> np.ndarray:
    bboxes[:, 0] *= scale_x
    bboxes[:, 2] *= scale_x
    bboxes[:, 1] *= scale_y
    bboxes[:, 3] *= scale_y
    return bboxes


def crop_mask(masks: np.ndarray, boxes: np.ndarray) -> np.ndarray:
    """
    "Crop" predicted masks by zeroing out everything not in the predicted bbox.
    Vectorized by Chong (thanks Chong).

    Args:
        - masks should be a size [h, w, n] tensor of masks
        - boxes should be a size [n, 4] tensor of bbox coords in relative point form
    """

    n, h, w = masks.shape
    x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)  # x1 shape(1,1,n)
    r = np.arange(w, dtype=x1.dtype)[None, None, :]  # rows shape(1,w,1)
    c = np.arange(h, dtype=x1.dtype)[None, :, None]  # cols shape(h,1,1)

    masks = masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
    return masks


def post_process_polygons(
    origin_shape: Tuple[int, int],
    polys: List[List[Tuple[float, float]]],
    infer_shape: Tuple[int, int],
    preproc: dict,
    resize_method: str = "Stretch to",
) -> List[List[Tuple[float, float]]]:
    """Scales and shifts polygons based on the given image shapes and preprocessing method.

    This function performs polygon scaling and shifting based on the specified resizing method and
    pre-processing steps. The polygons are transformed according to the ratio and padding between two images.

    Args:
        origin_shape (tuple of int): Shape of the source image (height, width).
        infer_shape (tuple of int): Shape of the target image (height, width).
        polys (list of list of tuple): List of polygons, where each polygon is represented by a list of (x, y) coordinates.
        preproc (object): Preprocessing details used for generating the transformation.
        resize_method (str, optional): Resizing method, either "Stretch to", "Fit (black edges) in", or "Fit (white edges) in". Defaults to "Stretch to".

    Returns:
        list of list of tuple: A list of shifted and scaled polygons.
    """
    (crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
        origin_shape, preproc
    )
    new_polys = []
    if resize_method == "Stretch to":
        width_ratio = origin_shape[1] / infer_shape[1]
        height_ratio = origin_shape[0] / infer_shape[0]
        new_polys = scale_polygons(
            polygons=polys,
            x_scale=width_ratio,
            y_scale=height_ratio,
        )
    elif resize_method in {"Fit (black edges) in", "Fit (white edges) in"}:
        new_polys = undo_image_padding_for_predicted_polygons(
            polygons=polys,
            infer_shape=infer_shape,
            origin_shape=origin_shape,
        )
    shifted_polys = []
    for poly in new_polys:
        poly = [(p[0] + crop_shift_x, p[1] + crop_shift_y) for p in poly]
        shifted_polys.append(poly)
    return shifted_polys


def scale_polygons(
    polygons: List[List[Tuple[float, float]]],
    x_scale: float,
    y_scale: float,
) -> List[List[Tuple[float, float]]]:
    result = []
    for poly in polygons:
        poly = [(p[0] * x_scale, p[1] * y_scale) for p in poly]
        result.append(poly)
    return result


def undo_image_padding_for_predicted_polygons(
    polygons: List[List[Tuple[float, float]]],
    origin_shape: Tuple[int, int],
    infer_shape: Tuple[int, int],
) -> List[List[Tuple[float, float]]]:
    scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
    inter_w = int(origin_shape[1] * scale)
    inter_h = int(origin_shape[0] * scale)
    pad_x = (infer_shape[1] - inter_w) / 2
    pad_y = (infer_shape[0] - inter_h) / 2
    result = []
    for poly in polygons:
        poly = [((p[0] - pad_x) / scale, (p[1] - pad_y) / scale) for p in poly]
        result.append(poly)
    return result


def get_static_crop_dimensions(
    orig_shape: Tuple[int, int],
    preproc: dict,
    disable_preproc_static_crop: bool = False,
) -> Tuple[Tuple[int, int], Tuple[int, int]]:
    """
    Generates a transformation based on preprocessing configuration.

    Args:
        orig_shape (tuple): The original shape of the object (e.g., image) - (height, width).
        preproc (dict): Preprocessing configuration dictionary, containing information such as static cropping.
        disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.

    Returns:
        tuple: A tuple containing the shift in the x and y directions, and the updated original shape after cropping.
    """
    try:
        if static_crop_should_be_applied(
            preprocessing_config=preproc,
            disable_preproc_static_crop=disable_preproc_static_crop,
        ):
            x_min, y_min, x_max, y_max = standardise_static_crop(
                static_crop_config=preproc[STATIC_CROP_KEY]
            )
        else:
            x_min, y_min, x_max, y_max = 0, 0, 1, 1
        crop_shift_x, crop_shift_y = (
            round(x_min * orig_shape[1]),
            round(y_min * orig_shape[0]),
        )
        cropped_percent_x = x_max - x_min
        cropped_percent_y = y_max - y_min
        orig_shape = (
            round(orig_shape[0] * cropped_percent_y),
            round(orig_shape[1] * cropped_percent_x),
        )
        return (crop_shift_x, crop_shift_y), orig_shape
    except KeyError as error:
        raise PostProcessingError(
            f"Could not find a proper configuration key {error} in post-processing."
        )


def standardise_static_crop(
    static_crop_config: Dict[str, int]
) -> Tuple[float, float, float, float]:
    return tuple(static_crop_config[key] / 100 for key in ["x_min", "y_min", "x_max", "y_max"])  # type: ignore


def post_process_keypoints(
    predictions: List[List[List[float]]],
    keypoints_start_index: int,
    infer_shape: Tuple[int, int],
    img_dims: List[Tuple[int, int]],
    preproc: dict,
    disable_preproc_static_crop: bool = False,
    resize_method: str = "Stretch to",
) -> List[List[List[float]]]:
    """Scales and shifts keypoints based on the given image shapes and preprocessing method.

    This function performs polygon scaling and shifting based on the specified resizing method and
    pre-processing steps. The polygons are transformed according to the ratio and padding between two images.

    Args:
        predictions: predictions from model
        keypoints_start_index: offset in the 3rd dimension pointing where in the prediction start keypoints [(x, y, cfg), ...] for each keypoint class
        img_dims list of (tuple of int): Shape of the source image (height, width).
        infer_shape (tuple of int): Shape of the target image (height, width).
        preproc (object): Preprocessing details used for generating the transformation.
        resize_method (str, optional): Resizing method, either "Stretch to", "Fit (black edges) in", or "Fit (white edges) in". Defaults to "Stretch to".
        disable_preproc_static_crop: flag to disable static crop
    Returns:
        list of list of list: predictions with post-processed keypoints
    """
    # Get static crop params
    scaled_predictions = []
    # Loop through batches
    for i, batch_predictions in enumerate(predictions):
        if len(batch_predictions) == 0:
            scaled_predictions.append([])
            continue
        np_batch_predictions = np.array(batch_predictions)
        keypoints = np_batch_predictions[:, keypoints_start_index:]
        (crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
            img_dims[i],
            preproc,
            disable_preproc_static_crop=disable_preproc_static_crop,
        )
        if resize_method == "Stretch to":
            keypoints = stretch_keypoints(
                keypoints=keypoints,
                infer_shape=infer_shape,
                origin_shape=origin_shape,
            )
        elif (
            resize_method == "Fit (black edges) in"
            or resize_method == "Fit (white edges) in"
        ):
            keypoints = undo_image_padding_for_predicted_keypoints(
                keypoints=keypoints,
                infer_shape=infer_shape,
                origin_shape=origin_shape,
            )
        keypoints = clip_keypoints_coordinates(
            keypoints=keypoints, origin_shape=origin_shape
        )
        keypoints = shift_keypoints(
            keypoints=keypoints, shift_x=crop_shift_x, shift_y=crop_shift_y
        )
        np_batch_predictions[:, keypoints_start_index:] = keypoints
        scaled_predictions.append(np_batch_predictions.tolist())
    return scaled_predictions


def stretch_keypoints(
    keypoints: np.ndarray,
    infer_shape: Tuple[int, int],
    origin_shape: Tuple[int, int],
) -> np.ndarray:
    scale_width = origin_shape[1] / infer_shape[1]
    scale_height = origin_shape[0] / infer_shape[0]
    for keypoint_id in range(keypoints.shape[1] // 3):
        keypoints[:, keypoint_id * 3] *= scale_width
        keypoints[:, keypoint_id * 3 + 1] *= scale_height
    return keypoints


def undo_image_padding_for_predicted_keypoints(
    keypoints: np.ndarray,
    infer_shape: Tuple[int, int],
    origin_shape: Tuple[int, int],
) -> np.ndarray:
    # Undo scaling and padding from letterbox resize preproc operation
    scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
    inter_w = int(origin_shape[1] * scale)
    inter_h = int(origin_shape[0] * scale)

    pad_x = (infer_shape[1] - inter_w) / 2
    pad_y = (infer_shape[0] - inter_h) / 2
    for coord_id in range(keypoints.shape[1] // 3):
        keypoints[:, coord_id * 3] -= pad_x
        keypoints[:, coord_id * 3] /= scale
        keypoints[:, coord_id * 3 + 1] -= pad_y
        keypoints[:, coord_id * 3 + 1] /= scale
    return keypoints


def clip_keypoints_coordinates(
    keypoints: np.ndarray,
    origin_shape: Tuple[int, int],
) -> np.ndarray:
    for keypoint_id in range(keypoints.shape[1] // 3):
        keypoints[:, keypoint_id * 3] = np.round(
            np.clip(keypoints[:, keypoint_id * 3], a_min=0, a_max=origin_shape[1])
        )
        keypoints[:, keypoint_id * 3 + 1] = np.round(
            np.clip(keypoints[:, keypoint_id * 3 + 1], a_min=0, a_max=origin_shape[0])
        )
    return keypoints


def shift_keypoints(
    keypoints: np.ndarray,
    shift_x: Union[int, float],
    shift_y: Union[int, float],
) -> np.ndarray:
    for keypoint_id in range(keypoints.shape[1] // 3):
        keypoints[:, keypoint_id * 3] += shift_x
        keypoints[:, keypoint_id * 3 + 1] += shift_y
    return keypoints


def sigmoid(x: Union[float, np.ndarray]) -> Union[float, np.number, np.ndarray]:
    """Computes the sigmoid function for the given input.

    The sigmoid function is defined as:
    f(x) = 1 / (1 + exp(-x))

    Args:
        x (float or numpy.ndarray): Input value or array for which the sigmoid function is to be computed.

    Returns:
        float or numpy.ndarray: The computed sigmoid value(s).
    """
    return 1 / (1 + np.exp(-x))