File size: 4,444 Bytes
2eafbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from typing import Dict, List, Tuple, Union

import cv2
import numpy as np

from inference.core.entities.requests.inference import (
    InstanceSegmentationInferenceRequest,
    KeypointsDetectionInferenceRequest,
    ObjectDetectionInferenceRequest,
)
from inference.core.entities.responses.inference import (
    InstanceSegmentationPrediction,
    Keypoint,
    KeypointsPrediction,
    ObjectDetectionInferenceResponse,
    ObjectDetectionPrediction,
    Point,
)
from inference.core.utils.image_utils import load_image_rgb, np_image_to_base64


def draw_detection_predictions(
    inference_request: Union[
        ObjectDetectionInferenceRequest,
        InstanceSegmentationInferenceRequest,
        KeypointsDetectionInferenceRequest,
    ],
    inference_response: Union[
        ObjectDetectionInferenceResponse,
        InstanceSegmentationPrediction,
        KeypointsPrediction,
    ],
    colors: Dict[str, str],
) -> bytes:
    image = load_image_rgb(inference_request.image)
    for box in inference_response.predictions:
        color = tuple(
            int(colors.get(box.class_name, "#4892EA")[i : i + 2], 16) for i in (1, 3, 5)
        )
        image = draw_bbox(
            image=image,
            box=box,
            color=color,
            thickness=inference_request.visualization_stroke_width,
        )
        if hasattr(box, "points"):
            image = draw_instance_segmentation_points(
                image=image,
                points=box.points,
                color=color,
                thickness=inference_request.visualization_stroke_width,
            )
        if hasattr(box, "keypoints"):
            draw_keypoints(
                image=image,
                keypoints=box.keypoints,
                color=color,
                thickness=inference_request.visualization_stroke_width,
            )
        if inference_request.visualization_labels:
            image = draw_labels(
                image=image,
                box=box,
                color=color,
            )
    return np_image_to_base64(image=image)


def draw_bbox(
    image: np.ndarray,
    box: ObjectDetectionPrediction,
    color: Tuple[int, ...],
    thickness: int,
) -> np.ndarray:
    left_top, right_bottom = bbox_to_points(box=box)
    return cv2.rectangle(
        image,
        left_top,
        right_bottom,
        color=color,
        thickness=thickness,
    )


def draw_instance_segmentation_points(
    image: np.ndarray,
    points: List[Point],
    color: Tuple[int, ...],
    thickness: int,
) -> np.ndarray:
    points_array = np.array([(int(p.x), int(p.y)) for p in points], np.int32)
    if len(points) > 2:
        image = cv2.polylines(
            image,
            [points_array],
            isClosed=True,
            color=color,
            thickness=thickness,
        )
    return image


def draw_keypoints(
    image: np.ndarray,
    keypoints: List[Keypoint],
    color: Tuple[int, ...],
    thickness: int,
) -> None:
    for keypoint in keypoints:
        center_coordinates = (round(keypoint.x), round(keypoint.y))
        image = cv2.circle(
            image,
            center_coordinates,
            thickness,
            color,
            -1,
        )


def draw_labels(
    image: np.ndarray,
    box: Union[ObjectDetectionPrediction, InstanceSegmentationPrediction],
    color: Tuple[int, ...],
) -> np.ndarray:
    (x1, y1), _ = bbox_to_points(box=box)
    text = f"{box.class_name} {box.confidence:.2f}"
    (text_width, text_height), _ = cv2.getTextSize(
        text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
    )
    button_size = (text_width + 20, text_height + 20)
    button_img = np.full(
        (button_size[1], button_size[0], 3), color[::-1], dtype=np.uint8
    )
    cv2.putText(
        button_img,
        text,
        (10, 10 + text_height),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.5,
        (255, 255, 255),
        1,
    )
    end_x = min(x1 + button_size[0], image.shape[1])
    end_y = min(y1 + button_size[1], image.shape[0])
    image[y1:end_y, x1:end_x] = button_img[: end_y - y1, : end_x - x1]
    return image


def bbox_to_points(
    box: Union[ObjectDetectionPrediction, InstanceSegmentationPrediction],
) -> Tuple[Tuple[int, int], Tuple[int, int]]:
    x1 = int(box.x - box.width / 2)
    x2 = int(box.x + box.width / 2)
    y1 = int(box.y - box.height / 2)
    y2 = int(box.y + box.height / 2)
    return (x1, y1), (x2, y2)