Spaces:
Sleeping
Sleeping
File size: 16,211 Bytes
81ecb2b cb029d0 81ecb2b cb029d0 81ecb2b 9d573a0 670f57e 9d573a0 670f57e 9d573a0 670f57e 9d573a0 670f57e 9d573a0 81ecb2b cb029d0 81ecb2b cb029d0 81ecb2b 670f57e 81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import sys
import io
import torch
import numpy as np
from omegaconf import OmegaConf
import PIL.Image
from PIL import Image
import rembg
from dva.ray_marcher import RayMarcher
from dva.io import load_from_config
from dva.utils import to_device
from dva.visualize import visualize_primvolume, visualize_video_primvolume
from models.diffusion import create_diffusion
import logging
from tqdm import tqdm
import mcubes
import xatlas
import nvdiffrast.torch as dr
import cv2
from scipy.ndimage import binary_dilation, binary_erosion
from sklearn.neighbors import NearestNeighbors
from utils.meshutils import clean_mesh, decimate_mesh
from utils.mesh import Mesh
from utils.uv_unwrap import box_projection_uv_unwrap, compute_vertex_normal
logger = logging.getLogger("inference.py")
glctx = dr.RasterizeCudaContext()
def remove_background(image: PIL.Image.Image,
rembg_session = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def resize_foreground(
image: PIL.Image.Image,
ratio: float,
) -> PIL.Image.Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = PIL.Image.fromarray(new_image)
return new_image
def extract_texmesh(args, model, output_path, device):
# Prepare directory
ins_dir = output_path
# Noise Filter
raw_srt_param = model.srt_param.clone()
raw_feat_param = model.feat_param.clone()
prim_position = raw_srt_param[:, 1:4]
prim_scale = raw_srt_param[:, 0:1]
dist = torch.sqrt(torch.sum((prim_position[:, None, :] - prim_position[None, :, :]) ** 2, dim=-1))
dist += torch.eye(prim_position.shape[0]).to(raw_srt_param)
min_dist, min_indices = dist.min(1)
dst_prim_scale = prim_scale[min_indices, :]
min_scale_converage = prim_scale * 1. + dst_prim_scale * 1.
prim_mask = min_dist < min_scale_converage[:, 0]
filtered_srt_param = raw_srt_param[prim_mask, :]
filtered_feat_param = raw_feat_param[prim_mask, ...]
model.srt_param.data = filtered_srt_param
model.feat_param.data = filtered_feat_param
print(f'[INFO] Mesh Extraction on PrimX: srt={model.srt_param.shape} feat={model.feat_param.shape}')
# Get SDFs
with torch.no_grad():
xx = torch.linspace(-1, 1, args.mc_resolution, device=device)
pts = torch.stack(torch.meshgrid(xx, xx, xx, indexing='ij'), dim=-1).reshape(-1,3)
chunks = torch.split(pts, args.batch_size)
dists = []
for chunk_pts in tqdm(chunks):
preds = model(chunk_pts)
dists.append(preds['sdf'].detach())
dists = torch.cat(dists, dim=0)
grid = dists.reshape(args.mc_resolution, args.mc_resolution, args.mc_resolution)
# Meshify
vertices, triangles = mcubes.marching_cubes(grid.cpu().numpy(), 0.0)
# Resize + recenter
b_min_np = np.array([-1., -1., -1.])
b_max_np = np.array([ 1., 1., 1.])
vertices = vertices / (args.mc_resolution - 1.0) * (b_max_np - b_min_np) + b_min_np
vertices, triangles = clean_mesh(vertices, triangles, min_f=8, min_d=5, repair=True, remesh=False)
if args.decimate > 0 and triangles.shape[0] > args.decimate:
vertices, triangles = decimate_mesh(vertices, triangles, args.decimate, remesh=args.remesh)
h0 = 1024
w0 = 1024
ssaa = 1
fp16 = True
v_np = vertices.astype(np.float32)
f_np = triangles.astype(np.int64)
v = torch.from_numpy(vertices).float().contiguous().to(device)
f = torch.from_numpy(triangles.astype(np.int64)).to(torch.int64).contiguous().to(device)
if args.fast_unwrap:
print(f'[INFO] running box-based fast unwrapping to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
v_normal = compute_vertex_normal(v, f)
uv, indices = box_projection_uv_unwrap(v, v_normal, f, 0.02)
indv_v = v[f].reshape(-1, 3)
indv_faces = torch.arange(indv_v.shape[0], device=device, dtype=f.dtype).reshape(-1, 3)
uv_flat = uv[indices].reshape((-1, 2))
v = indv_v.contiguous()
f = indv_faces.contiguous()
ft_np = f.cpu().numpy()
vt_np = uv_flat.cpu().numpy()
else:
print(f'[INFO] running xatlas to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
# unwrap uv in contracted space
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
chart_options.max_iterations = 0 # disable merge_chart for faster unwrap...
pack_options = xatlas.PackOptions()
atlas.generate(chart_options=chart_options, pack_options=pack_options)
_, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
vt = torch.from_numpy(vt_np.astype(np.float32)).float().contiguous().to(device)
ft = torch.from_numpy(ft_np.astype(np.int64)).int().contiguous().to(device)
uv = vt * 2.0 - 1.0 # uvs to range [-1, 1]
uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]
if ssaa > 1:
h = int(h0 * ssaa)
w = int(w0 * ssaa)
else:
h, w = h0, w0
rast, _ = dr.rasterize(glctx, uv.unsqueeze(0), ft, (h, w)) # [1, h, w, 4]
xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f.int()) # [1, h, w, 3]
mask, _ = dr.interpolate(torch.ones_like(v[:, :1]).unsqueeze(0), rast, f.int()) # [1, h, w, 1]
# masked query
xyzs = xyzs.view(-1, 3)
mask = (mask > 0).view(-1)
feats = torch.zeros(h * w, 6, device=device, dtype=torch.float32)
if mask.any():
xyzs = xyzs[mask] # [M, 3]
# batched inference to avoid OOM
all_feats = []
head = 0
chunk_size = args.batch_size
while head < xyzs.shape[0]:
tail = min(head + chunk_size, xyzs.shape[0])
with torch.cuda.amp.autocast(enabled=fp16):
preds = model(xyzs[head:tail])
# [R, G, B, NA, roughness, metallic]
all_feats.append(torch.concat([preds['tex'].float(), torch.zeros_like(preds['tex'])[..., 0:1].float(), preds['mat'].float()], dim=-1))
head += chunk_size
feats[mask] = torch.cat(all_feats, dim=0)
feats = feats.view(h, w, -1) # 6 channels
mask = mask.view(h, w)
# quantize [0.0, 1.0] to [0, 255]
feats = feats.cpu().numpy()
feats = (feats * 255)
### NN search as a queer antialiasing ...
mask = mask.cpu().numpy()
inpaint_region = binary_dilation(mask, iterations=32) # pad width
inpaint_region[mask] = 0
search_region = mask.copy()
not_search_region = binary_erosion(search_region, iterations=3)
search_region[not_search_region] = 0
search_coords = np.stack(np.nonzero(search_region), axis=-1)
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
knn = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(search_coords)
_, indices = knn.kneighbors(inpaint_coords)
feats[tuple(inpaint_coords.T)] = feats[tuple(search_coords[indices[:, 0]].T)]
target_mesh = Mesh(v=torch.from_numpy(v_np).contiguous(), f=torch.from_numpy(f_np).contiguous(), ft=ft.contiguous(), vt=torch.from_numpy(vt_np).contiguous(), albedo=torch.from_numpy(feats[..., :3]) / 255, metallicRoughness=torch.from_numpy(feats[..., 3:]) / 255)
target_mesh.write(os.path.join(ins_dir, f'pbr_mesh.glb'))
model.srt_param.data = raw_srt_param
model.feat_param.data = raw_feat_param
def main(config):
logging.basicConfig(level=logging.INFO)
ddim_steps = config.inference.ddim
if ddim_steps > 0:
use_ddim = True
else:
use_ddim = False
cfg_scale = config.inference.get("cfg", 0.0)
inference_dir = f"{config.output_dir}/inference_folder"
os.makedirs(inference_dir, exist_ok=True)
amp = False
precision = config.inference.get("precision", 'fp16')
if precision == 'tf32':
precision_dtype = torch.float32
elif precision == 'fp16':
amp = True
precision_dtype = torch.float16
else:
raise NotImplementedError("{} precision is not supported".format(precision))
device = torch.device(f"cuda:{0}")
seed = config.inference.seed
torch.manual_seed(seed)
torch.cuda.set_device(device)
model = load_from_config(config.model.generator)
vae = load_from_config(config.model.vae)
conditioner = load_from_config(config.model.conditioner)
vae_state_dict = torch.load(config.model.vae_checkpoint_path, map_location='cpu')
vae.load_state_dict(vae_state_dict['model_state_dict'])
if config.checkpoint_path:
state_dict = torch.load(config.checkpoint_path, map_location='cpu')
model.load_state_dict(state_dict['ema'])
vae = vae.to(device)
conditioner = conditioner.to(device)
model = model.to(device)
config.diffusion.pop("timestep_respacing")
if use_ddim:
respacing = "ddim{}".format(ddim_steps)
else:
respacing = ""
diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion) # default: 1000 steps, linear noise schedule
if use_ddim:
sample_fn = diffusion.ddim_sample_loop_progressive
else:
sample_fn = diffusion.p_sample_loop_progressive
if cfg_scale > 0:
fwd_fn = model.forward_with_cfg
else:
fwd_fn = model.forward
rm = RayMarcher(
config.image_height,
config.image_width,
**config.rm,
).to(device)
perchannel_norm = False
if "latent_mean" in config.model:
latent_mean = torch.Tensor(config.model.latent_mean)[None, None, :].to(device)
latent_std = torch.Tensor(config.model.latent_std)[None, None, :].to(device)
assert latent_mean.shape[-1] == config.model.generator.in_channels
perchannel_norm = True
model.eval()
examples_dir = config.inference.input_dir
img_list = os.listdir(examples_dir)
rembg_session = rembg.new_session()
logger.info(f"Starting Inference...")
for img_path in img_list:
full_img_path = os.path.join(examples_dir, img_path)
img_name = img_path[:-4]
current_output_dir = os.path.join(inference_dir, img_name)
os.makedirs(current_output_dir, exist_ok=True)
input_image = Image.open(full_img_path)
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
raw_image = np.array(input_image)
mask = (raw_image[..., -1][..., None] > 0) * 1
raw_image = raw_image[..., :3] * mask
input_cond = torch.from_numpy(np.array(raw_image)[None, ...]).to(device)
with torch.no_grad():
latent = torch.randn(1, config.model.num_prims, 1, 4, 4, 4)
batch = {}
inf_bs = 1
inf_x = torch.randn(inf_bs, config.model.num_prims, 68).to(device)
y = conditioner.encoder(input_cond)
model_kwargs = dict(y=y[:inf_bs, ...], precision_dtype=precision_dtype, enable_amp=amp)
if cfg_scale > 0:
model_kwargs['cfg_scale'] = cfg_scale
sampled_count = -1
for samples in sample_fn(fwd_fn, inf_x.shape, inf_x, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
):
sampled_count += 1
if not (sampled_count % 10 == 0 or sampled_count == diffusion.num_timesteps - 1):
continue
else:
recon_param = samples["sample"].reshape(inf_bs, config.model.num_prims, -1)
if perchannel_norm:
recon_param = recon_param / config.model.latent_nf * latent_std + latent_mean
recon_srt_param = recon_param[:, :, 0:4]
recon_feat_param = recon_param[:, :, 4:] # [8, 2048, 64]
recon_feat_param_list = []
# one-by-one to avoid oom
for inf_bidx in range(inf_bs):
if not perchannel_norm:
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]) / config.model.latent_nf)
else:
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]))
recon_feat_param_list.append(decoded.detach())
recon_feat_param = torch.concat(recon_feat_param_list, dim=0)
# invert normalization
if not perchannel_norm:
recon_srt_param[:, :, 0:1] = (recon_srt_param[:, :, 0:1] / 10) + 0.05
recon_feat_param[:, 0:1, ...] /= 5.
recon_feat_param[:, 1:, ...] = (recon_feat_param[:, 1:, ...] + 1) / 2.
recon_feat_param = recon_feat_param.reshape(inf_bs, config.model.num_prims, -1)
recon_param = torch.concat([recon_srt_param, recon_feat_param], dim=-1)
visualize_primvolume("{}/dstep{:04d}_recon.jpg".format(current_output_dir, sampled_count), batch, recon_param, rm, device)
visualize_video_primvolume(current_output_dir, batch, recon_param, 60, rm, device)
prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(current_output_dir))
if config.inference.export_glb:
logger.info(f"Starting GLB Mesh Extraction...")
config.model.pop("vae")
config.model.pop("vae_checkpoint_path")
config.model.pop("conditioner")
config.model.pop("generator")
config.model.pop("latent_nf")
config.model.pop("latent_mean")
config.model.pop("latent_std")
model_primx = load_from_config(config.model)
for img_path in img_list:
img_name = img_path[:-4]
output_path = os.path.join(inference_dir, img_name)
denoise_param_path = os.path.join(inference_dir, img_name, 'denoised.pt')
ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict']
model_primx.load_state_dict(ckpt_weight)
model_primx.to(device)
model_primx.eval()
with torch.no_grad():
model_primx.srt_param[:, 1:4] *= 0.85
extract_texmesh(config.inference, model_primx, output_path, device)
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
# manually enable tf32 to get speedup on A100 GPUs
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# set config
config = OmegaConf.load(str(sys.argv[1]))
config_cli = OmegaConf.from_cli(args_list=sys.argv[2:])
if config_cli:
logger.info("overriding with following values from args:")
logger.info(OmegaConf.to_yaml(config_cli))
config = OmegaConf.merge(config, config_cli)
main(config)
|