File size: 21,356 Bytes
cf4e107
75ba88e
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310cdb9
cf4e107
 
 
 
 
 
310cdb9
e84dbc6
 
310cdb9
 
e84dbc6
 
310cdb9
 
cf4e107
310cdb9
 
cf4e107
 
310cdb9
cf4e107
310cdb9
 
 
 
 
 
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ba88e
cf4e107
a6cd4bf
 
 
 
cf4e107
 
 
 
 
71b44cf
 
 
 
 
 
 
 
 
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ccecf
 
 
 
cf4e107
 
 
 
 
310cdb9
 
 
cf4e107
310cdb9
 
 
cf4e107
 
 
 
310cdb9
 
 
cf4e107
 
 
 
 
 
 
 
 
b3ccecf
cf4e107
 
310cdb9
b3ccecf
cf4e107
 
310cdb9
cf4e107
310cdb9
cf4e107
 
310cdb9
 
 
cf4e107
 
 
 
 
b3ccecf
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b44cf
cf4e107
75ba88e
cf4e107
75ba88e
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b44cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4e107
 
 
 
 
 
 
 
 
 
 
b3ccecf
75ba88e
 
 
 
 
 
 
 
 
 
 
 
cf4e107
 
 
75ba88e
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310cdb9
 
 
 
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84dbc6
cf4e107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310cdb9
cf4e107
 
 
 
310cdb9
 
 
 
 
 
 
 
cf4e107
310cdb9
e84dbc6
 
310cdb9
 
 
 
 
 
 
 
e84dbc6
cf4e107
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import mimetypes
import re
import zipfile

import gradio as gr
import pandas as pd
from google.cloud import documentai_v1 as documentai

from utils import (
    ALL_FIELDS_COMBINED,
    CREDENTIALS,
    LOCATION,
    PROCESSOR_ID,
    PROJECT_ID,
    upload_to_google_sheets,
)


def upload_and_process_next(df_data, parsed_documents, current_idx):
    df = pd.DataFrame(
        df_data.values[:, 1].reshape(1, -1),
        columns=df_data.values[:, 0],
    )
    result = upload_to_google_sheets(df)

    return process_next(result, parsed_documents, current_idx)


def skip_and_process_next(parsed_documents, current_idx):
    return process_next("Skipped", parsed_documents, current_idx)


def process_next(message, parsed_documents, current_idx):
    current_idx += 1

    if current_idx < len(parsed_documents):
        new_df = parsed_documents[current_idx]
        # Extract values for UI components
        ui_values = extract_ui_values_from_dataframe(new_df)
        return [message, new_df, parsed_documents, current_idx] + ui_values
    else:
        return [
            "No more connect cards to process!",
            pd.DataFrame(),
            parsed_documents,
            current_idx,
        ] + [gr.update() for _ in range(28)]


def extract_ui_values_from_dataframe(df):
    """Extract values from dataframe for UI components in the correct order"""
    # Create a dictionary for easy lookup
    data_dict = dict(zip(df["Attribute"], df["Value"]))

    # Return values in the same order as all_inputs list
    return [
        data_dict.get("Name", ""),  # name_input
        data_dict.get("Phone", ""),  # phone_input
        data_dict.get("Email", ""),  # email_input
        data_dict.get("Cadet", "") == "Yes",  # cadet_cb
        data_dict.get("Greek", "") == "Yes",  # greek_cb
        data_dict.get("Transfer", "") == "Yes",  # transfer_cb
        data_dict.get("Military", "") == "Yes",  # military_cb
        data_dict.get("International", "") == "Yes",  # intl_cb
        data_dict.get("Res Hall", ""),  # res_hall_input
        data_dict.get("Room #", ""),  # room_input
        data_dict.get("Off Campus", "") == "Yes",  # off_campus_cb
        data_dict.get("Fr", "") == "Yes",  # fr_cb
        data_dict.get("So", "") == "Yes",  # so_cb
        data_dict.get("Jr", "") == "Yes",  # jr_cb
        data_dict.get("Sr", "") == "Yes",  # sr_cb
        data_dict.get("Grad Student", "") == "Yes",  # grad_cb
        data_dict.get("Male", "") == "Yes",  # male_cb
        data_dict.get("Female", "") == "Yes",  # female_cb
        data_dict.get("Non-binary", "") == "Yes",  # nonbinary_cb
        # Manual checkboxes - these don't get updated by Document AI
        data_dict.get("Spiritual Survey Yes", "") == "Yes",  # Spiritual Survey Yes
        data_dict.get("Spiritual Survey No", "") == "Yes",  # ss_no_cb
        data_dict.get("Spiritual Survey Maybe", "") == "Yes",  # ss_maybe_cb
        data_dict.get("Social Event Yes", "") == "Yes",  # se_yes_cb
        data_dict.get("Social Event No", "") == "Yes",  # se_no_cb
        data_dict.get("Social Event Maybe", "") == "Yes",  # se_maybe_cb
        data_dict.get("Small Group Yes", "") == "Yes",  # sg_yes_cb
        data_dict.get("Small Group No", "") == "Yes",  # sg_no_cb
        data_dict.get("Small Group Maybe", "") == "Yes",  # sg_maybe_cb
    ]


def create_sample_data():
    """Create sample dataframe structure"""
    return pd.DataFrame(
        [
            {"Attribute": attr, "Value": val}
            for attr, val in zip(ALL_FIELDS_COMBINED, [""] * len(ALL_FIELDS_COMBINED))
        ]
    )


def update_dataframe(*args):
    """Update dataframe from inputs"""
    return pd.DataFrame(
        [
            {"Attribute": attr, "Value": val}
            for attr, val in zip(ALL_FIELDS_COMBINED, args)
        ]
    )


def process_document_form_parser(zip_file):
    if zip_file is None:
        return [create_sample_data(), [], -1] + [
            "" if i < 5 else False for i in range(28)
        ]

    # Initialize state
    parsed_documents = []
    current_idx = -1

    raw_documents = extract_raw_documents_from_zip_file(zip_file)

    if not raw_documents:
        return [create_sample_data(), [], -1] + [
            "" if i < 5 else False for i in range(28)
        ]

    client = documentai.DocumentProcessorServiceClient(credentials=CREDENTIALS)
    name = client.processor_path(PROJECT_ID, LOCATION, PROCESSOR_ID)

    # Process each document individually
    for i, raw_document in enumerate(raw_documents):
        # This is the slow operation - process one document at a time
        request = documentai.ProcessRequest(name=name, raw_document=raw_document)
        result = client.process_document(request=request)

        # Extract dataframe from the processed document
        df = extract_dataframe_from_document(result.document)
        parsed_documents.append(df)

        # Only yield for the first document to update UI, then let user work without interference
        if i == 0:
            current_idx = 0
            ui_values = extract_ui_values_from_dataframe(df)
            yield [df, parsed_documents, current_idx] + ui_values
        else:
            # For subsequent documents, yield no-update signals to avoid overwriting user changes
            yield [gr.update(), parsed_documents, gr.update()] + [
                gr.update() for _ in range(28)
            ]


def extract_dataframe_from_document(document):
    # Initialize with empty values for ALL fields (Document AI + Manual)
    result = {field: "" for field in ALL_FIELDS_COMBINED}

    # Only process Document AI fields from the document
    for page in document.pages:
        for form_field in page.form_fields:
            field_name = (
                form_field.field_name.text_anchor.content
                if form_field.field_name
                else "Unnamed Field"
            )
            field_value = (
                form_field.field_value.text_anchor.content
                if form_field.field_value
                else "No Value"
            )

            field_name = field_name.strip().replace(":", "")
            field_value = field_value.strip().replace(":", "")

            if field_name == "Name" and "\n" in field_value:
                field_value = " ".join(field_value.split("\n")[1:])

            # Check if the field is in the original ALL_FIELDS (Document AI processable fields only)
            if field_name in ALL_FIELDS_COMBINED:
                if field_name == "Email":
                    # Validate email addresses
                    field_value = field_value.replace("ut.edu", "vt.edu")
                    field_value = field_value.replace("it.edu", "vt.edu")

                    # Make email addresses lowercase
                    field_value = field_value.lower()

                    # Remove spaces from email addresses
                    field_value = field_value.replace(" ", "")
                    field_value = field_value.replace(",", ".")

                if field_name == "Phone":
                    # Remove non-numeric characters from phone numbers
                    field_value = "".join(filter(str.isdigit, field_value))

                # Parse checkboxes
                if field_value == "β˜‘":
                    field_value = "Yes"

                result[field_name] = field_value
            elif field_name in ["Yes", "No", "Maybe"]:
                # ~0.75 -> spiritual survey
                # ~0.83 -> social events
                # ~0.89 -> small group
                y_coord = form_field.field_name.bounding_poly.normalized_vertices.pb[
                    0
                ].y
                if 0.70 < y_coord < 0.80:
                    field_name = "Spiritual Survey " + field_name
                elif 0.80 < y_coord < 0.88:
                    field_name = "Social Event " + field_name
                elif 0.88 < y_coord < 0.95:
                    field_name = "Small Group " + field_name
                field_value = "Yes" if field_value == "β˜‘" else "No"
                result[field_name] = field_value
            else:
                print(f"Unused field name: {field_name}, field value: {field_value}")

    return pd.DataFrame(
        [
            {"Attribute": attr, "Value": val}
            for attr, val in zip(ALL_FIELDS_COMBINED, result.values())
        ]
    )


def sort_key(filename):
    # Extract timestamp and number from filename
    match = re.match(r"Scanned_(\d{8}-\d{4})(?:\((\d+)\))?\.pdf", filename)
    if match:
        timestamp = match.group(1)
        number = (
            int(match.group(2)) if match.group(2) else 0
        )  # 0 for files without parentheses
        return (timestamp, number)
    return (filename, 0)  # fallback


def extract_raw_documents_from_zip_file(zip_file):
    raw_documents = []
    with zipfile.ZipFile(zip_file.name, "r") as z:
        for filename in sorted(z.namelist(), key=sort_key):
            with z.open(filename) as file_data:
                file_content = file_data.read()
                mime_type = mimetypes.guess_type(filename)[0]

                raw_documents.append(
                    documentai.RawDocument(content=file_content, mime_type=mime_type)
                )

    return raw_documents


# Create the Gradio app with CSS for absolute positioning
with gr.Blocks(
    title="Connect Card Editor",
    css="""
        .card-container {
            display: inline-block !important;
            width: 600px !important;
        }
        .upload-images-file {
            position: absolute !important;
            top: 800px !important;
            height: 100px !important;
            width: 600px !important;
        }
        .card-image {
            position: absolute !important;
            top: 0 !important;
            left: 0 !important;
            width: 600px !important;
            z-index: 1 !important;
        }
        .overlay-input {
            position: absolute !important;
            z-index: 10 !important;
            border: 1px solid #ccc !important;
            border-radius: 3px !important;
            font-size: 12px !important;
        }
        .overlay-checkbox {
            position: absolute !important;
            z-index: 10 !important;
            border-radius: 3px !important;
            padding: 2px !important;
        }

        /* Position text inputs */
        .name-input { top: 100px !important; left: 100px !important; width: 450px !important; }
        .phone-input { top: 190px !important; left: 100px !important; width: 450px !important; }
        .email-input { top: 240px !important; left: 100px !important; width: 450px !important; }
        .res-hall-input { top: 410px !important; left: 110px !important; width: 300px !important; }
        .room-input { top: 410px !important; left: 515px !important; width: 75px !important; }

        /* Position checkboxes */
        .male-cb { top: 16px !important; left: 449px !important; width: fit-content !important; }
        .female-cb { top: 43px !important; left: 449px !important; width: fit-content !important; }
        .nonbinary-cb { top: 71px !important; left: 449px !important; width: fit-content !important; }
        .fr-cb { top: 160px !important; left: 100px !important; width: fit-content !important; }
        .so-cb { top: 160px !important; left: 175px !important; width: fit-content !important; }
        .jr-cb { top: 160px !important; left: 256px !important; width: fit-content !important; }
        .sr-cb { top: 160px !important; left: 332px !important; width: fit-content !important; }
        .grad-cb { top: 160px !important; left: 410px !important; width: fit-content !important; }
        .cadet-cb { top: 339px !important; left: 27px !important; width: fit-content !important; }
        .greek-cb { top: 339px !important; left: 137px !important; width: fit-content !important; }
        .transfer-cb { top: 339px !important; left: 395px !important; width: fit-content !important; }
        .military-cb { top: 379px !important; left: 27px !important; width: fit-content !important; }
        .intl-cb { top: 379px !important; left: 224px !important; width: fit-content !important; }
        .off-campus-cb { top: 473px !important; left: 124px !important; width: fit-content !important; }

        /* Position manual (no document AI) checkboxes */
        .ss-yes-cb { top: 598px !important; left: 319px !important; width: fit-content !important; }
        .ss-no-cb { top: 598px !important; left: 398px !important; width: fit-content !important; }
        .ss-maybe-cb { top: 598px !important; left: 475px !important; width: fit-content !important; }
        .se-yes-cb { top: 660px !important; left: 319px !important; width: fit-content !important; }
        .se-no-cb { top: 660px !important; left: 398px !important; width: fit-content !important; }
        .se-maybe-cb { top: 660px !important; left: 475px !important; width: fit-content !important; }
        .sg-yes-cb { top: 710px !important; left: 319px !important; width: fit-content !important; }
        .sg-no-cb { top: 710px !important; left: 398px !important; width: fit-content !important; }
        .sg-maybe-cb { top: 710px !important; left: 475px !important; width: fit-content !important; }
    """,
) as demo:
    gr.Markdown("# Connect Card Editor with Overlaid Components")

    # State variables to replace globals
    parsed_documents_state = gr.State([])
    current_idx_state = gr.State(-1)

    with gr.Row():
        with gr.Column(scale=3, elem_classes=["card-container"]):
            # Background card image
            card_image = gr.Image(
                value="./blank_connection_card.jpg",
                elem_classes=["card-image"],
                interactive=False,
                show_label=False,
            )

            male_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "male-cb"],
                container=False,
            )
            female_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "female-cb"],
                container=False,
            )
            nonbinary_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "nonbinary-cb"],
                container=False,
            )

            name_input = gr.Textbox(
                placeholder="",
                elem_classes=["overlay-input", "name-input"],
                show_label=False,
                container=False,
            )

            fr_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "fr-cb"],
                container=False,
            )
            so_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "so-cb"],
                container=False,
            )
            jr_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "jr-cb"],
                container=False,
            )
            sr_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "sr-cb"],
                container=False,
            )
            grad_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "grad-cb"],
                container=False,
            )

            phone_input = gr.Textbox(
                placeholder="",
                elem_classes=["overlay-input", "phone-input"],
                show_label=False,
                container=False,
            )
            email_input = gr.Textbox(
                placeholder="",
                elem_classes=["overlay-input", "email-input"],
                show_label=False,
                container=False,
            )

            cadet_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "cadet-cb"],
                container=False,
            )
            greek_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "greek-cb"],
                container=False,
            )
            transfer_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "transfer-cb"],
                container=False,
            )
            military_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "military-cb"],
                container=False,
            )
            intl_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "intl-cb"],
                container=False,
            )

            res_hall_input = gr.Textbox(
                placeholder="",
                elem_classes=["overlay-input", "res-hall-input"],
                show_label=False,
                container=False,
            )
            room_input = gr.Textbox(
                min_width=50,
                placeholder="",
                elem_classes=["overlay-input", "room-input"],
                show_label=False,
                container=False,
            )

            off_campus_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "off-campus-cb"],
                container=False,
            )

            # Manual checkboxes that are not processed by Document AI
            ss_yes_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "ss-yes-cb"],
                container=False,
            )
            ss_no_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "ss-no-cb"],
                container=False,
            )
            ss_maybe_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "ss-maybe-cb"],
                container=False,
            )
            se_yes_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "se-yes-cb"],
                container=False,
            )
            se_no_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "se-no-cb"],
                container=False,
            )
            se_maybe_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "se-maybe-cb"],
                container=False,
            )
            sg_yes_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "sg-yes-cb"],
                container=False,
            )
            sg_no_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "sg-no-cb"],
                container=False,
            )
            sg_maybe_cb = gr.Checkbox(
                label="",
                elem_classes=["overlay-checkbox", "sg-maybe-cb"],
                container=False,
            )

        with gr.Column(scale=2):
            # Data display and controls
            output_df = gr.Dataframe(
                value=create_sample_data(),
                label="",
                interactive=False,
                column_widths=[1, 1],
            )

            upload_to_sheets_button = gr.Button("Upload and process next")
            skip_upload_button = gr.Button("Skip and process next")
            upload_to_sheets_status = gr.Textbox(label="Upload Status")

        with gr.Column(scale=1):
            zipfile_upload = gr.File(
                label="Upload zipfile of images", file_types=[".zip"]
            )

    # Collect all inputs in the same order as extract_ui_values_from_dataframe returns them
    all_inputs = [
        name_input,
        phone_input,
        email_input,
        cadet_cb,
        greek_cb,
        transfer_cb,
        military_cb,
        intl_cb,
        res_hall_input,
        room_input,
        off_campus_cb,
        fr_cb,
        so_cb,
        jr_cb,
        sr_cb,
        grad_cb,
        male_cb,
        female_cb,
        nonbinary_cb,
        ss_yes_cb,
        ss_no_cb,
        ss_maybe_cb,
        se_yes_cb,
        se_no_cb,
        se_maybe_cb,
        sg_yes_cb,
        sg_no_cb,
        sg_maybe_cb,
    ]

    # Set up event handlers
    zipfile_upload.change(
        fn=process_document_form_parser,
        inputs=[zipfile_upload],
        outputs=[output_df, parsed_documents_state, current_idx_state] + all_inputs,
    )

    upload_to_sheets_button.click(
        fn=upload_and_process_next,
        inputs=[output_df, parsed_documents_state, current_idx_state],
        outputs=[
            upload_to_sheets_status,
            output_df,
            parsed_documents_state,
            current_idx_state,
        ]
        + all_inputs,
    )

    skip_upload_button.click(
        fn=skip_and_process_next,
        inputs=[parsed_documents_state, current_idx_state],
        outputs=[
            upload_to_sheets_status,
            output_df,
            parsed_documents_state,
            current_idx_state,
        ]
        + all_inputs,
    )

    for input_component in all_inputs:
        input_component.change(
            fn=update_dataframe, inputs=all_inputs, outputs=[output_df]
        )


if __name__ == "__main__":
    demo.launch()