File size: 6,684 Bytes
3eca424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
from detectron2.config import CfgNode as CN


def add_mask_former_default_config(cfg):
    # data config
    # select the dataset mapper
    cfg.INPUT.DATASET_MAPPER_NAME = "mask_former_semantic"
    # Color augmentation
    cfg.INPUT.COLOR_AUG_SSD = False
    # We retry random cropping until no single category in semantic segmentation GT occupies more
    # than `SINGLE_CATEGORY_MAX_AREA` part of the crop.
    cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0
    # Pad image and segmentation GT in dataset mapper.
    cfg.INPUT.SIZE_DIVISIBILITY = -1

    # solver config
    # weight decay on embedding
    cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0
    # optimizer
    cfg.SOLVER.OPTIMIZER = "ADAMW"
    cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1

    # mask_former model config
    cfg.MODEL.MASK_FORMER = CN()

    # loss
    cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True
    cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = 0.1
    cfg.MODEL.MASK_FORMER.CLASS_WEIGHT = 1.0
    cfg.MODEL.MASK_FORMER.DICE_WEIGHT = 1.0
    cfg.MODEL.MASK_FORMER.MASK_WEIGHT = 20.0

    # transformer config
    cfg.MODEL.MASK_FORMER.NHEADS = 8
    cfg.MODEL.MASK_FORMER.DROPOUT = 0.1
    cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
    cfg.MODEL.MASK_FORMER.ENC_LAYERS = 0
    cfg.MODEL.MASK_FORMER.DEC_LAYERS = 6
    cfg.MODEL.MASK_FORMER.PRE_NORM = False

    cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
    cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 100

    cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE = "res5"
    cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ = False

    # mask_former inference config
    cfg.MODEL.MASK_FORMER.TEST = CN()
    cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = False
    cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = False
    cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = False
    cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD = 0.0
    cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD = 0.0
    cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False

    # you can use this config to override
    cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY = 32

    # pixel decoder config
    cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
    # adding transformer in pixel decoder
    cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
    # pixel decoder
    cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder"

    # swin transformer backbone
    cfg.MODEL.SWIN = CN()
    cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
    cfg.MODEL.SWIN.PATCH_SIZE = 4
    cfg.MODEL.SWIN.EMBED_DIM = 96
    cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
    cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
    cfg.MODEL.SWIN.WINDOW_SIZE = 7
    cfg.MODEL.SWIN.MLP_RATIO = 4.0
    cfg.MODEL.SWIN.QKV_BIAS = True
    cfg.MODEL.SWIN.QK_SCALE = None
    cfg.MODEL.SWIN.DROP_RATE = 0.0
    cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
    cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
    cfg.MODEL.SWIN.APE = False
    cfg.MODEL.SWIN.PATCH_NORM = True
    cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]

    # NOTE: maskformer2 extra configs
    # transformer module
    cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME = "MultiScaleMaskedTransformerDecoder"

    # LSJ aug
    cfg.INPUT.IMAGE_SIZE = 1024
    cfg.INPUT.MIN_SCALE = 0.1
    cfg.INPUT.MAX_SCALE = 2.0

    # MSDeformAttn encoder configs
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"]
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8

    # point loss configs
    # Number of points sampled during training for a mask point head.
    cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS = 112 * 112
    # Oversampling parameter for PointRend point sampling during training. Parameter `k` in the
    # original paper.
    cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO = 3.0
    # Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in
    # the original paper.
    cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75


def add_our_config(cfg):
    cfg.ORACLE = False
    cfg.PSEUDO = False
    cfg.PSEUDO_WITH_PRIOR = True
    cfg.PSEUDO_REJECT_THRESHOLD = 0.0
    cfg.TEST.SLIDING_WINDOW = False
    cfg.TEST.SLIDING_TILE_SIZE = 224
    cfg.TEST.SLIDING_OVERLAP = 2 / 3.0
    cfg.PSEUDO_FLAG_NAME = "trainable_flag"
    cfg.SOLVER.TEST_IMS_PER_BATCH = 1
    cfg.DATASETS.SAMPLE_PER_CLASS = -1
    cfg.DATASETS.SAMPLE_SEED = 0

    cfg.TEST.OPTIM = CN()
    cfg.TEST.OPTIM.LR = 0.001

    cfg.INPUT.TASK_NAME = ["semantic segmentation."]
    # whether to use dense crf
    cfg.TEST.DENSE_CRF = False
    # embedding head
    cfg.MODEL.SEM_SEG_HEAD.EMBEDDING_DIM = 512
    cfg.MODEL.SEM_SEG_HEAD.EMBED_HIDDEN_DIM = 1024
    cfg.MODEL.SEM_SEG_HEAD.EMBED_LAYERS = 2
    # clip_adapter
    cfg.MODEL.CLIP_ADAPTER = CN()
    cfg.MODEL.CLIP_ADAPTER.PROMPT_LEARNER = "learnable"
    # for predefined
    cfg.MODEL.CLIP_ADAPTER.PREDEFINED_PROMPT_TEMPLATES = ["a sculpture of a {}."]
    # for learnable prompt
    cfg.MODEL.CLIP_ADAPTER.PROMPT_DIM = 512
    cfg.MODEL.CLIP_ADAPTER.PROMPT_SHAPE = (16, 0)
    cfg.MODEL.CLIP_ADAPTER.TASK_PROMPT_SHAPE = 8
    cfg.MODEL.CLIP_ADAPTER.PROMPT_CHECKPOINT = ""
    cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME = "ViT-B/16"
    cfg.MODEL.CLIP_ADAPTER.MASK_FILL = "mean"
    cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO = 1.0
    cfg.MODEL.CLIP_ADAPTER.MASK_THR = 0.5
    cfg.MODEL.CLIP_ADAPTER.MASK_MATTING = False
    cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED = True
    cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE = True
    cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT = 0.8
    #
    cfg.MODEL.CLIP_ADAPTER.SEPERATE_ADAPTER = False
    cfg.MODEL.CLIP_ADAPTER.REGION_CLIP_ADAPTER = CN()
    cfg.MODEL.CLIP_ADAPTER.REGION_CLIP_ADAPTER.CLIP_MODEL_NAME = "ViT-B/16"
    cfg.MODEL.CLIP_ADAPTER.REGION_CLIP_ADAPTER.PROMPT_LEARNER = "predefined"
    # for predefined
    cfg.MODEL.CLIP_ADAPTER.REGION_CLIP_ADAPTER.PREDEFINED_PROMPT_TEMPLATES = [
        "a photo of a {}."
    ]
    # for learnable prompt
    cfg.MODEL.CLIP_ADAPTER.REGION_CLIP_ADAPTER.PROMPT_DIM = 512
    cfg.MODEL.CLIP_ADAPTER.REGION_CLIP_ADAPTER.PROMPT_SHAPE = (16, 0)
    cfg.MODEL.CLIP_ADAPTER.REGION_CLIP_ADAPTER.PROMPT_CHECKPOINT = ""


    cfg.MODEL.SEM_SEG_HEAD.EMB_SIZE = 256
    cfg.MODEL.SEM_SEG_HEAD.EMBED_DIM = 2048
    cfg.MODEL.SEM_SEG_HEAD.NUM_HEADS = 8
    cfg.MODEL.SEM_SEG_HEAD.USE_LAYER_SCALE = True


    # wandb
    cfg.WANDB = CN()
    cfg.WANDB.PROJECT = "zero_shot_seg"
    cfg.WANDB.NAME = None


def add_mask_former_config(cfg):
    """
    Add config for MASK_FORMER.
    """
    add_mask_former_default_config(cfg)
    add_our_config(cfg)