File size: 9,623 Bytes
764ee8b
 
 
 
c7f4d57
764ee8b
5a6c57a
c7f4d57
764ee8b
c7f4d57
c470f73
764ee8b
 
f41c6d3
5a6c57a
402ce86
5a6c57a
e4251f1
 
 
477deaa
5a6c57a
c470f73
 
 
 
 
 
 
 
 
764ee8b
5a6c57a
764ee8b
 
 
 
 
5a6c57a
764ee8b
 
 
f41c6d3
764ee8b
4d014d6
c470f73
 
 
 
 
 
 
 
 
1c927ef
4d014d6
c470f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764ee8b
 
c470f73
5b27e8b
 
c470f73
5b27e8b
 
 
764ee8b
5b27e8b
 
 
 
764ee8b
5b27e8b
c470f73
 
 
 
 
 
 
 
 
 
5b27e8b
 
f41c6d3
c470f73
f41c6d3
 
 
 
 
 
c470f73
 
f41c6d3
c470f73
 
 
 
 
 
 
 
 
 
 
f41c6d3
 
c470f73
f41c6d3
 
c470f73
f41c6d3
 
 
c470f73
 
 
f41c6d3
c470f73
f41c6d3
c470f73
 
 
f41c6d3
 
 
 
 
 
 
 
 
c470f73
f41c6d3
c470f73
f41c6d3
 
 
c470f73
f41c6d3
 
 
 
 
 
764ee8b
c470f73
764ee8b
 
 
 
c470f73
764ee8b
 
 
c470f73
764ee8b
 
 
 
 
 
 
c470f73
 
5a6c57a
402ce86
 
725b112
c470f73
 
 
 
 
 
725b112
402ce86
c470f73
 
 
 
 
 
c178a2e
c470f73
 
 
 
 
 
 
402ce86
 
c470f73
402ce86
 
 
c470f73
402ce86
5b27e8b
402ce86
c470f73
4b501aa
c470f73
 
 
4b501aa
 
c470f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b501aa
 
 
 
 
c470f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b501aa
c470f73
 
 
 
 
 
 
 
 
 
 
 
 
4b501aa
5a6c57a
764ee8b
c470f73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import gradio as gr
import gc, copy, re
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from huggingface_hub import hf_hub_download

ctx_limit = 4096
title = "RWKV-5-World-1B5-v2-20231025-ctx4096"

model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy="cpu bf16")
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")


def generate_prompt(instruction, input=None, history=None):
    # parse the chat history into a string of user and assistant messages
    history_str = ""

    if history is not None:
        for pair in history:
            history_str += f"User: {pair[0]}\n\nAssistant: {pair[1]}\n\n"

    instruction = (
        instruction.strip()
        .replace("\r\n", "\n")
        .replace("\n\n", "\n")
        .replace("\n\n", "\n")
    )
    input = (
        input.strip().replace("\r\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n")
    )
    if input and len(input) > 0:
        return f"""{history_str}Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""{history_str}User: {instruction}

Assistant:"""


examples = [
    ["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 300, 1.2, 0.5, 0.5, 0.5],
    [
        "Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.",
        "",
        300,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
    ["Write a song about ravens.", "", 300, 1.2, 0.5, 0.5, 0.5],
    ["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.5, 0.5],
    [
        "Write a story using the following information",
        "A man named Alex chops a tree down",
        300,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
    [
        "Generate a list of adjectives that describe a person as brave.",
        "",
        300,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
    [
        "You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.",
        "",
        300,
        1.2,
        0.5,
        0.5,
        0.5,
    ],
]


def respond(history=None):
    global token_count_chat, temperature_chat, top_p_chat, presence_penalty_chat, count_penalty_chat

    # get the lastest user message and the additional parameters
    instruction = msg.value
    token_count = token_count_chat.value

    temperature = temperature_chat.value
    top_p = top_p_chat.value
    presence_penalty = presence_penalty_chat.value
    count_penalty = count_penalty_chat.value

    history[-1][1] = ""

    for character in generator(
        instruction,
        None,
        token_count,
        temperature,
        top_p,
        presence_penalty,
        count_penalty,
    ):
        history[-1][1] += character
        yield history


def generator(
    instruction,
    input=None,
    token_count=333,
    temperature=1.0,
    top_p=0.5,
    presencePenalty=0.5,
    countPenalty=0.5,
):
    args = PIPELINE_ARGS(
        temperature=max(0.2, float(temperature)),
        top_p=float(top_p),
        alpha_frequency=countPenalty,
        alpha_presence=presencePenalty,
        token_ban=[],  # ban the generation of some tokens
        token_stop=[0],
    )  # stop generation whenever you see any token here

    instruction = re.sub(r"\n{2,}", "\n", instruction).strip().replace("\r\n", "\n")
    input = re.sub(r"\n{2,}", "\n", input).strip().replace("\r\n", "\n")
    ctx = generate_prompt(instruction, input, history)
    print(ctx + "\n")

    all_tokens = []
    out_last = 0
    out_str = ""
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(
            pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state
        )
        for n in occurrence:
            out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency

        token = pipeline.sample_logits(
            out, temperature=args.temperature, top_p=args.top_p
        )
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= 0.996
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1

        tmp = pipeline.decode(all_tokens[out_last:])
        if "\ufffd" not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1
        if "\n\n" in out_str:
            break

    del out
    del state
    gc.collect()
    yield out_str.strip()


def user(message, chatbot):
    chatbot = chatbot or []
    return "", chatbot + [[message, None]]


def alternative(chatbot, history):
    if not chatbot or not history:
        return chatbot, history

    chatbot[-1][1] = None
    history[0] = copy.deepcopy(history[1])

    return chatbot, history


with gr.Blocks(title=title) as demo:
    gr.HTML(f'<div style="text-align: center;">\n<h1>🌍World - {title}</h1>\n</div>')

    with gr.Tab("Chat mode"):
        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot()
                msg = gr.Textbox(
                    scale=4,
                    show_label=False,
                    placeholder="Enter text and press enter",
                    container=False,
                )
                clear = gr.ClearButton([msg, chatbot])
            with gr.Column():
                token_count_chat = gr.Slider(
                    10, 512, label="Max Tokens", step=10, value=333
                )
                temperature_chat = gr.Slider(
                    0.2, 2.0, label="Temperature", step=0.1, value=1.2
                )
                top_p_chat = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
                presence_penalty_chat = gr.Slider(
                    0.0, 1.0, label="Presence Penalty", step=0.1, value=0
                )
                count_penalty_chat = gr.Slider(
                    0.0, 1.0, label="Count Penalty", step=0.1, value=0.7
                )

            def clear_chat():
                return "", []

            def user_msg(message, history):
                history = history or []
                return "", history + [[message, None]]

            msg.submit(user_msg, [msg, chatbot], [msg, chatbot], queue=False).then(
                respond, chatbot, chatbot, api_name="chat"
            )

    with gr.Tab("Instruct mode"):
        gr.Markdown(
            f"100% RNN RWKV-LM **trained on 100+ natural languages**. Demo limited to ctxlen {ctx_limit}. For best results, <b>keep your prompt short and clear</b>."
        )
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    lines=2,
                    label="Instruction",
                    value="東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。",
                )
                input_instruct = gr.Textbox(
                    lines=2, label="Input", placeholder="", value=""
                )
                token_count_instruct = gr.Slider(
                    10, 512, label="Max Tokens", step=10, value=333
                )
                temperature_instruct = gr.Slider(
                    0.2, 2.0, label="Temperature", step=0.1, value=1.2
                )
                top_p_instruct = gr.Slider(
                    0.0, 1.0, label="Top P", step=0.05, value=0.3
                )
                presence_penalty_instruct = gr.Slider(
                    0.0, 1.0, label="Presence Penalty", step=0.1, value=0
                )
                count_penalty_instruct = gr.Slider(
                    0.0, 1.0, label="Count Penalty", step=0.1, value=0.7
                )
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=5)
        data = gr.Dataset(
            components=[
                instruction,
                input_instruct,
                token_count_instruct,
                temperature_instruct,
                top_p_instruct,
                presence_penalty_instruct,
                count_penalty_instruct,
            ],
            samples=examples,
            label="Example Instructions",
            headers=[
                "Instruction",
                "Input",
                "Max Tokens",
                "Temperature",
                "Top P",
                "Presence Penalty",
                "Count Penalty",
            ],
        )
        submit.click(
            generator,
            [
                instruction,
                input_instruct,
                token_count_instruct,
                temperature_instruct,
                top_p_instruct,
                presence_penalty_instruct,
                count_penalty_instruct,
            ],
            [output],
        )
        clear.click(lambda: None, [], [output])
        data.click(
            lambda x: x,
            [data],
            [
                instruction,
                input_instruct,
                token_count_instruct,
                temperature_instruct,
                top_p_instruct,
                presence_penalty_instruct,
                count_penalty_instruct,
            ],
        )


demo.queue(max_size=10)
demo.launch(share=False)