File size: 9,623 Bytes
764ee8b c7f4d57 764ee8b 5a6c57a c7f4d57 764ee8b c7f4d57 c470f73 764ee8b f41c6d3 5a6c57a 402ce86 5a6c57a e4251f1 477deaa 5a6c57a c470f73 764ee8b 5a6c57a 764ee8b 5a6c57a 764ee8b f41c6d3 764ee8b 4d014d6 c470f73 1c927ef 4d014d6 c470f73 764ee8b c470f73 5b27e8b c470f73 5b27e8b 764ee8b 5b27e8b 764ee8b 5b27e8b c470f73 5b27e8b f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 764ee8b c470f73 764ee8b c470f73 764ee8b c470f73 764ee8b c470f73 5a6c57a 402ce86 725b112 c470f73 725b112 402ce86 c470f73 c178a2e c470f73 402ce86 c470f73 402ce86 c470f73 402ce86 5b27e8b 402ce86 c470f73 4b501aa c470f73 4b501aa c470f73 4b501aa c470f73 4b501aa c470f73 4b501aa 5a6c57a 764ee8b c470f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import gc, copy, re
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from huggingface_hub import hf_hub_download
ctx_limit = 4096
title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy="cpu bf16")
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
def generate_prompt(instruction, input=None, history=None):
# parse the chat history into a string of user and assistant messages
history_str = ""
if history is not None:
for pair in history:
history_str += f"User: {pair[0]}\n\nAssistant: {pair[1]}\n\n"
instruction = (
instruction.strip()
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.replace("\n\n", "\n")
)
input = (
input.strip().replace("\r\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n")
)
if input and len(input) > 0:
return f"""{history_str}Instruction: {instruction}
Input: {input}
Response:"""
else:
return f"""{history_str}User: {instruction}
Assistant:"""
examples = [
["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 300, 1.2, 0.5, 0.5, 0.5],
[
"Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.",
"",
300,
1.2,
0.5,
0.5,
0.5,
],
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.5, 0.5],
[
"Write a story using the following information",
"A man named Alex chops a tree down",
300,
1.2,
0.5,
0.5,
0.5,
],
[
"Generate a list of adjectives that describe a person as brave.",
"",
300,
1.2,
0.5,
0.5,
0.5,
],
[
"You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.",
"",
300,
1.2,
0.5,
0.5,
0.5,
],
]
def respond(history=None):
global token_count_chat, temperature_chat, top_p_chat, presence_penalty_chat, count_penalty_chat
# get the lastest user message and the additional parameters
instruction = msg.value
token_count = token_count_chat.value
temperature = temperature_chat.value
top_p = top_p_chat.value
presence_penalty = presence_penalty_chat.value
count_penalty = count_penalty_chat.value
history[-1][1] = ""
for character in generator(
instruction,
None,
token_count,
temperature,
top_p,
presence_penalty,
count_penalty,
):
history[-1][1] += character
yield history
def generator(
instruction,
input=None,
token_count=333,
temperature=1.0,
top_p=0.5,
presencePenalty=0.5,
countPenalty=0.5,
):
args = PIPELINE_ARGS(
temperature=max(0.2, float(temperature)),
top_p=float(top_p),
alpha_frequency=countPenalty,
alpha_presence=presencePenalty,
token_ban=[], # ban the generation of some tokens
token_stop=[0],
) # stop generation whenever you see any token here
instruction = re.sub(r"\n{2,}", "\n", instruction).strip().replace("\r\n", "\n")
input = re.sub(r"\n{2,}", "\n", input).strip().replace("\r\n", "\n")
ctx = generate_prompt(instruction, input, history)
print(ctx + "\n")
all_tokens = []
out_last = 0
out_str = ""
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(
pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state
)
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
token = pipeline.sample_logits(
out, temperature=args.temperature, top_p=args.top_p
)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if "\ufffd" not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
if "\n\n" in out_str:
break
del out
del state
gc.collect()
yield out_str.strip()
def user(message, chatbot):
chatbot = chatbot or []
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
with gr.Blocks(title=title) as demo:
gr.HTML(f'<div style="text-align: center;">\n<h1>🌍World - {title}</h1>\n</div>')
with gr.Tab("Chat mode"):
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot()
msg = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
clear = gr.ClearButton([msg, chatbot])
with gr.Column():
token_count_chat = gr.Slider(
10, 512, label="Max Tokens", step=10, value=333
)
temperature_chat = gr.Slider(
0.2, 2.0, label="Temperature", step=0.1, value=1.2
)
top_p_chat = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
presence_penalty_chat = gr.Slider(
0.0, 1.0, label="Presence Penalty", step=0.1, value=0
)
count_penalty_chat = gr.Slider(
0.0, 1.0, label="Count Penalty", step=0.1, value=0.7
)
def clear_chat():
return "", []
def user_msg(message, history):
history = history or []
return "", history + [[message, None]]
msg.submit(user_msg, [msg, chatbot], [msg, chatbot], queue=False).then(
respond, chatbot, chatbot, api_name="chat"
)
with gr.Tab("Instruct mode"):
gr.Markdown(
f"100% RNN RWKV-LM **trained on 100+ natural languages**. Demo limited to ctxlen {ctx_limit}. For best results, <b>keep your prompt short and clear</b>."
)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
lines=2,
label="Instruction",
value="東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。",
)
input_instruct = gr.Textbox(
lines=2, label="Input", placeholder="", value=""
)
token_count_instruct = gr.Slider(
10, 512, label="Max Tokens", step=10, value=333
)
temperature_instruct = gr.Slider(
0.2, 2.0, label="Temperature", step=0.1, value=1.2
)
top_p_instruct = gr.Slider(
0.0, 1.0, label="Top P", step=0.05, value=0.3
)
presence_penalty_instruct = gr.Slider(
0.0, 1.0, label="Presence Penalty", step=0.1, value=0
)
count_penalty_instruct = gr.Slider(
0.0, 1.0, label="Count Penalty", step=0.1, value=0.7
)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=5)
data = gr.Dataset(
components=[
instruction,
input_instruct,
token_count_instruct,
temperature_instruct,
top_p_instruct,
presence_penalty_instruct,
count_penalty_instruct,
],
samples=examples,
label="Example Instructions",
headers=[
"Instruction",
"Input",
"Max Tokens",
"Temperature",
"Top P",
"Presence Penalty",
"Count Penalty",
],
)
submit.click(
generator,
[
instruction,
input_instruct,
token_count_instruct,
temperature_instruct,
top_p_instruct,
presence_penalty_instruct,
count_penalty_instruct,
],
[output],
)
clear.click(lambda: None, [], [output])
data.click(
lambda x: x,
[data],
[
instruction,
input_instruct,
token_count_instruct,
temperature_instruct,
top_p_instruct,
presence_penalty_instruct,
count_penalty_instruct,
],
)
demo.queue(max_size=10)
demo.launch(share=False)
|