File size: 10,361 Bytes
764ee8b c7f4d57 764ee8b 5a6c57a 2f526e4 8bd55c1 9119294 c470f73 764ee8b f41c6d3 5a6c57a 6fc45c1 3dc48ef aa9cf14 bdbdff6 8f494a0 bdf3b10 270945b 359bcf8 5fd8e54 58d14e4 5fd8e54 764ee8b 5fd8e54 764ee8b f41c6d3 764ee8b 4d014d6 c470f73 bdbdff6 c470f73 1c927ef 4d014d6 c470f73 bdbdff6 c470f73 bdbdff6 c470f73 bdbdff6 c470f73 764ee8b c470f73 f41c6d3 c470f73 7f06e10 f41c6d3 c470f73 6fc45c1 c470f73 b3567f3 c470f73 75efb4d 2ea6700 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 c470f73 f41c6d3 75efb4d 3025d66 f41c6d3 c470f73 f41c6d3 d1ada29 764ee8b c470f73 764ee8b c470f73 764ee8b c470f73 764ee8b c470f73 5fd8e54 8bd55c1 5fd8e54 5a6c57a 402ce86 725b112 c470f73 725b112 402ce86 c470f73 c178a2e c470f73 402ce86 c470f73 402ce86 c470f73 a0a91a5 cd14260 52faafe 75efb4d 52faafe 75efb4d 52faafe 402ce86 648b6a9 402ce86 c470f73 4b501aa c470f73 4b501aa c470f73 4b501aa c470f73 4b501aa 5a6c57a 764ee8b c470f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import gradio as gr
import gc, copy, re
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from huggingface_hub import hf_hub_download
ctx_limit = 4096
# title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
# "BlinkDL/rwkv-5-world"
title = "RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth"
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-6-world", filename=f"{title}")
model = RWKV(model=model_path, strategy="cpu bf16")
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
def generate_prompt(instruction, input=None, history=None):
if instruction:
instruction = (
instruction.strip()
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.replace("\n\n", "\n")
)
if (history is not None) and len(history) > 1:
input = ""
for pair in history:
if pair[0] is not None and pair[1] is not None and len(pair[1]) > 0:
input += f"{pair[0]},{pair[1]},"
input = input[:-1] + f". {instruction}"
instruction = "Generate a Response to the **last** question below."
if input and len(input) > 0:
input = (
input.strip()
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.replace("\n\n", "\n")
)
return f"""Instruction: {instruction}
Input: {input}
Response:"""
else:
return f"""User: {instruction}
Assistant:"""
examples = [
["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 300, 1.2, 0.5, 0.5, 0.5],
[
"Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.",
"",
333,
1.2,
0.5,
0.5,
0.5,
],
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.5, 0.5],
[
"Write a story using the following information",
"A man named Alex chops a tree down",
333,
1.2,
0.5,
0.5,
0.5,
],
[
"Generate a list of adjectives that describe a person as brave.",
"",
333,
1.2,
0.5,
0.5,
0.5,
],
[
"You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.",
"",
333,
1.2,
0.5,
0.5,
0.5,
],
]
def generator(
instruction,
input=None,
token_count=333,
temperature=1.0,
top_p=0.5,
presencePenalty=0.5,
countPenalty=0.5,
history=None
):
args = PIPELINE_ARGS(
temperature=max(2.0, float(temperature)),
top_p=float(top_p),
alpha_frequency=countPenalty,
alpha_presence=presencePenalty,
token_ban=[], # ban the generation of some tokens
token_stop=[0], # stop generation whenever you see any token here
)
instruction = re.sub(r"\n{2,}", "\n", instruction).strip().replace("\r\n", "\n")
no_history = (history is None)
if no_history:
input = re.sub(r"\n{2,}", "\n", input).strip().replace("\r\n", "\n")
ctx = generate_prompt(instruction, input, history)
print(ctx + "\n")
all_tokens = []
out_last = 0
out_str = ""
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(
pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state
)
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
token = pipeline.sample_logits(
out, temperature=args.temperature, top_p=args.top_p
)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if "\ufffd" not in tmp:
out_str += tmp
if no_history:
yield out_str.strip()
else:
yield tmp
out_last = i + 1
if "\n\n" in out_str:
break
del out
del state
gc.collect()
if no_history:
yield out_str.strip()
def user(message, chatbot):
chatbot = chatbot or []
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
with gr.Blocks(title=title) as demo:
gr.HTML(f'<div style="text-align: center;">\n<h1>🌍World - {title}</h1>\n</div>')
gr.Markdown(
f"100% RNN RWKV-LM **trained on 12+ natural languages**. Demo limited to ctxlen {ctx_limit}. For best results, <b>write short imperative prompts</b> like commands and requests. Example: use \"Tell me what my name is\" instead of \"What's my name?\"."
+ "\n\n"
+ f"Clone this space for faster inference if you can run the app on GPU or better CPU. To use CUDA, replace <code>strategy='cpu bf16'</code> with <code>strategy='cuda fp16'</code> in `app.py`."
)
with gr.Tab("Chat mode"):
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot()
msg = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
clear = gr.ClearButton([msg, chatbot])
with gr.Column():
token_count_chat = gr.Slider(
10, 512, label="Max Tokens", step=10, value=333
)
temperature_chat = gr.Slider(
0.2, 2.0, label="Temperature", step=0.1, value=1.2
)
top_p_chat = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
presence_penalty_chat = gr.Slider(
0.0, 1.0, label="Presence Penalty", step=0.1, value=0
)
count_penalty_chat = gr.Slider(
0.0, 1.0, label="Count Penalty", step=0.1, value=0.7
)
def clear_chat():
return "", []
def user_msg(message, history):
history = history or []
return "", history + [[message, None]]
def respond(history, token_count, temperature, top_p, presence_penalty, count_penalty):
instruction = history[-1][0]
history[-1][1] = ""
for character in generator(
instruction,
None,
token_count,
temperature,
top_p,
presence_penalty,
count_penalty,
history
):
history[-1][1] += character
yield history
msg.submit(user_msg, [msg, chatbot], [msg, chatbot], queue=False).then(
respond, [chatbot, token_count_chat, temperature_chat, top_p_chat, presence_penalty_chat, count_penalty_chat], chatbot, api_name="chat"
)
with gr.Tab("Instruct mode"):
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
lines=2,
label="Instruction",
value="東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。",
)
input_instruct = gr.Textbox(
lines=2, label="Input", placeholder="", value=""
)
token_count_instruct = gr.Slider(
10, 512, label="Max Tokens", step=10, value=333
)
temperature_instruct = gr.Slider(
0.2, 2.0, label="Temperature", step=0.1, value=1.2
)
top_p_instruct = gr.Slider(
0.0, 1.0, label="Top P", step=0.05, value=0.3
)
presence_penalty_instruct = gr.Slider(
0.0, 1.0, label="Presence Penalty", step=0.1, value=0
)
count_penalty_instruct = gr.Slider(
0.0, 1.0, label="Count Penalty", step=0.1, value=0.7
)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=5)
data = gr.Dataset(
components=[
instruction,
input_instruct,
token_count_instruct,
temperature_instruct,
top_p_instruct,
presence_penalty_instruct,
count_penalty_instruct,
],
samples=examples,
label="Example Instructions",
headers=[
"Instruction",
"Input",
"Max Tokens",
"Temperature",
"Top P",
"Presence Penalty",
"Count Penalty",
],
)
submit.click(
generator,
[
instruction,
input_instruct,
token_count_instruct,
temperature_instruct,
top_p_instruct,
presence_penalty_instruct,
count_penalty_instruct,
],
[output],
)
clear.click(lambda: None, [], [output])
data.click(
lambda x: x,
[data],
[
instruction,
input_instruct,
token_count_instruct,
temperature_instruct,
top_p_instruct,
presence_penalty_instruct,
count_penalty_instruct,
],
)
demo.queue(max_size=10)
demo.launch(share=False)
|