File size: 5,014 Bytes
ac6acf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import torch
class LatentFormat:
scale_factor = 1.0
latent_channels = 4
latent_rgb_factors = None
taesd_decoder_name = None
def process_in(self, latent):
return latent * self.scale_factor
def process_out(self, latent):
return latent / self.scale_factor
class SD15(LatentFormat):
def __init__(self, scale_factor=0.18215):
self.scale_factor = scale_factor
self.latent_rgb_factors = [
# R G B
[ 0.3512, 0.2297, 0.3227],
[ 0.3250, 0.4974, 0.2350],
[-0.2829, 0.1762, 0.2721],
[-0.2120, -0.2616, -0.7177]
]
self.taesd_decoder_name = "taesd_decoder"
class SDXL(LatentFormat):
scale_factor = 0.13025
def __init__(self):
self.latent_rgb_factors = [
# R G B
[ 0.3920, 0.4054, 0.4549],
[-0.2634, -0.0196, 0.0653],
[ 0.0568, 0.1687, -0.0755],
[-0.3112, -0.2359, -0.2076]
]
self.taesd_decoder_name = "taesdxl_decoder"
class SDXL_Playground_2_5(LatentFormat):
def __init__(self):
self.scale_factor = 0.5
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
self.latent_rgb_factors = [
# R G B
[ 0.3920, 0.4054, 0.4549],
[-0.2634, -0.0196, 0.0653],
[ 0.0568, 0.1687, -0.0755],
[-0.3112, -0.2359, -0.2076]
]
self.taesd_decoder_name = "taesdxl_decoder"
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class SD_X4(LatentFormat):
def __init__(self):
self.scale_factor = 0.08333
self.latent_rgb_factors = [
[-0.2340, -0.3863, -0.3257],
[ 0.0994, 0.0885, -0.0908],
[-0.2833, -0.2349, -0.3741],
[ 0.2523, -0.0055, -0.1651]
]
class SC_Prior(LatentFormat):
latent_channels = 16
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
[-0.0326, -0.0204, -0.0127],
[-0.1592, -0.0427, 0.0216],
[ 0.0873, 0.0638, -0.0020],
[-0.0602, 0.0442, 0.1304],
[ 0.0800, -0.0313, -0.1796],
[-0.0810, -0.0638, -0.1581],
[ 0.1791, 0.1180, 0.0967],
[ 0.0740, 0.1416, 0.0432],
[-0.1745, -0.1888, -0.1373],
[ 0.2412, 0.1577, 0.0928],
[ 0.1908, 0.0998, 0.0682],
[ 0.0209, 0.0365, -0.0092],
[ 0.0448, -0.0650, -0.1728],
[-0.1658, -0.1045, -0.1308],
[ 0.0542, 0.1545, 0.1325],
[-0.0352, -0.1672, -0.2541]
]
class SC_B(LatentFormat):
def __init__(self):
self.scale_factor = 1.0 / 0.43
self.latent_rgb_factors = [
[ 0.1121, 0.2006, 0.1023],
[-0.2093, -0.0222, -0.0195],
[-0.3087, -0.1535, 0.0366],
[ 0.0290, -0.1574, -0.4078]
]
class SD3(LatentFormat):
latent_channels = 16
def __init__(self):
self.scale_factor = 1.5305
self.shift_factor = 0.0609
self.latent_rgb_factors = [
[-0.0645, 0.0177, 0.1052],
[ 0.0028, 0.0312, 0.0650],
[ 0.1848, 0.0762, 0.0360],
[ 0.0944, 0.0360, 0.0889],
[ 0.0897, 0.0506, -0.0364],
[-0.0020, 0.1203, 0.0284],
[ 0.0855, 0.0118, 0.0283],
[-0.0539, 0.0658, 0.1047],
[-0.0057, 0.0116, 0.0700],
[-0.0412, 0.0281, -0.0039],
[ 0.1106, 0.1171, 0.1220],
[-0.0248, 0.0682, -0.0481],
[ 0.0815, 0.0846, 0.1207],
[-0.0120, -0.0055, -0.0867],
[-0.0749, -0.0634, -0.0456],
[-0.1418, -0.1457, -0.1259]
]
self.taesd_decoder_name = "taesd3_decoder"
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class StableAudio1(LatentFormat):
latent_channels = 64
|