Spaces:
Sleeping
Sleeping
File size: 1,244 Bytes
7561385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from fastai.vision.all import PILImage
def predict(image):
# Transform the image
pil_image = PILImage.create(image)
# Predict
preds, _, probs = learn.predict(pil_image)
# Apply the threshold
threshold = 0.425
classes = [learn.dls.vocab[i] for i in range(len(probs)) if probs[i] > threshold]
pet_type = "dog" if "dog" in classes else "cat" if "cat" in classes else None
breeds = [breed for breed in classes if breed not in ["cat", "dog"]]
if pet_type:
breed_info = f"The breed is {'/'.join(breeds)}." if breeds else "The breed is not identified."
return f"This is a {pet_type}. {breed_info}"
else:
return "This is not a cat, nor a dog."
# Define the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs="text",
live=True,
title="Cat and Dog Image Classifier",
description="Upload an image of a cat or a dog, and the model will identify the type and breed.",
article="This model has been trained on the Oxford Pets dataset and might not recognize all types dog and cat breeds. For best results, use clear images."
)
# Launch the interface
iface.launch(share=True) |