Spaces:
Runtime error
Runtime error
File size: 3,348 Bytes
ce252ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import os
import yaml
import torch
import torch.nn as nn
import numpy as np
from .diffusion import GaussianDiffusion
from .wavenet import WaveNet
from .vocoder import Vocoder
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def load_model_vocoder(
model_path,
device='cpu',
config_path = None
):
if config_path is None: config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
else: config_file = config_path
with open(config_file, "r") as config:
args = yaml.safe_load(config)
args = DotDict(args)
# load vocoder
vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
# load model
model = Unit2Mel(
args.data.encoder_out_channels,
args.model.n_spk,
args.model.use_pitch_aug,
vocoder.dimension,
args.model.n_layers,
args.model.n_chans,
args.model.n_hidden)
print(' [Loading] ' + model_path)
ckpt = torch.load(model_path, map_location=torch.device(device))
model.to(device)
model.load_state_dict(ckpt['model'])
model.eval()
return model, vocoder, args
class Unit2Mel(nn.Module):
def __init__(
self,
input_channel,
n_spk,
use_pitch_aug=False,
out_dims=128,
n_layers=20,
n_chans=384,
n_hidden=256):
super().__init__()
self.unit_embed = nn.Linear(input_channel, n_hidden)
self.f0_embed = nn.Linear(1, n_hidden)
self.volume_embed = nn.Linear(1, n_hidden)
if use_pitch_aug:
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
else:
self.aug_shift_embed = None
self.n_spk = n_spk
if n_spk is not None and n_spk > 1:
self.spk_embed = nn.Embedding(n_spk, n_hidden)
# diffusion
self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden), out_dims=out_dims)
def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
'''
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
'''
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
if self.n_spk is not None and self.n_spk > 1:
if spk_mix_dict is not None:
for k, v in spk_mix_dict.items():
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
x = x + v * self.spk_embed(spk_id_torch)
else:
x = x + self.spk_embed(spk_id)
if self.aug_shift_embed is not None and aug_shift is not None:
x = x + self.aug_shift_embed(aug_shift / 5)
x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
return x
|