Spaces:
Running
Running
File size: 6,205 Bytes
2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 46af7ed 2fdb666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import numpy as np
import gradio as gr
import spaces
import os
import random
import torch
from PIL import Image
import cv2
from huggingface_hub import login
from diffusers import FluxControlNetPipeline, FluxControlNetModel
from diffusers.models import FluxMultiControlNetModel
"""
FLUX‑1 ControlNet demo
----------------------
This script rebuilds the Gradio interface shown in your screenshot with **one** control‑image upload
slot and integrates the FLUX.1‑dev‑ControlNet‑Union‑Pro model.
Key points
~~~~~~~~~~
* Single *control image* input (left).
* *Result* and *Pre‑processed Cond* previews side‑by‑side (center & right).
* *Prompt* textbox plus a dedicated **ControlNet** panel for choosing the mode and strength.
* Seed handling with optional randomisation.
* Advanced sliders for *Guidance scale* and *Inference steps*.
* Works on CUDA (bfloat16) or CPU (float32).
* Minimal Canny preview implementation when the *canny* mode is selected (extend as you like for the
other modes).
Before running, set the `HUGGINGFACE_TOKEN` environment variable **or** call
`login("<YOUR_HF_TOKEN>")` explicitly.
"""
# --------------------------------------------------
# Model & pipeline setup
# --------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN_NEW")
login(HF_TOKEN)
# If you prefer to hard‑code the token, uncomment:
# login("hf_your_token_here")
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
CONTROLNET_MODEL = "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
controlnet_single = FluxControlNetModel.from_pretrained(
CONTROLNET_MODEL, torch_dtype=dtype
)
controlnet = FluxMultiControlNetModel([controlnet_single])
pipe = FluxControlNetPipeline.from_pretrained(
BASE_MODEL, controlnet=controlnet, torch_dtype=dtype
).to(device)
pipe.set_progress_bar_config(disable=True)
# --------------------------------------------------
# UI ‑> model value mapping
# --------------------------------------------------
MODE_MAPPING = {
"canny": 0,
"depth": 1,
"openpose": 2,
"gray": 3,
"blur": 4,
"tile": 5,
"low quality": 6,
}
MAX_SEED = 100
# --------------------------------------------------
# Helper: quick‑n‑dirty Canny preview (only for UI display)
# --------------------------------------------------
def _preview_canny(pil_img: Image.Image) -> Image.Image:
arr = np.array(pil_img.convert("RGB"))
edges = cv2.Canny(arr, 100, 200)
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
return Image.fromarray(edges_rgb)
def _make_preview(control_image: Image.Image, mode: str) -> Image.Image:
if mode == "canny":
return _preview_canny(control_image)
# For other modes you can plug in your own visualiser later
return control_image
# --------------------------------------------------
# Inference function
# --------------------------------------------------
@spaces.GPU
def infer(
control_image: Image.Image,
prompt: str,
mode: str,
control_strength: float,
seed: int,
randomize_seed: bool,
guidance_scale: float,
num_inference_steps: int,
):
if control_image is None:
raise gr.Error("Please upload a control image first.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
gen = torch.Generator(device).manual_seed(seed)
w, h = control_image.size
result = pipe(
prompt=prompt,
control_image=[control_image],
control_mode=[MODE_MAPPING[mode]],
width=w,
height=h,
controlnet_conditioning_scale=[control_strength],
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=gen,
).images[0]
preview = _make_preview(control_image, mode)
return result, seed, preview
# --------------------------------------------------
# Gradio UI
# --------------------------------------------------
css = """#wrapper {max-width: 960px; margin: 0 auto;}"""
with gr.Blocks(css=css, elem_id="wrapper") as demo:
gr.Markdown("## FLUX.1‑dev‑ControlNet‑Union‑Pro")
gr.Markdown(
"A unified ControlNet for **FLUX.1‑dev** from the InstantX team and Shakker Labs. "
+ "Recommended strengths: *canny 0.65*, *tile 0.45*, *depth 0.55*, *blur 0.45*, "
+ "*openpose 0.55*, *gray 0.45*, *low quality 0.40*. Long prompts usually help."
)
# ------------ Image panel row ------------
with gr.Row():
control_image = gr.Image(
label="Upload a processed control image",
type="pil",
height=512,
)
result_image = gr.Image(label="Result", height=512)
preview_image = gr.Image(label="Pre‑processed Cond", height=512)
# ------------ Prompt ------------
prompt_txt = gr.Textbox(label="Prompt", value="best quality", lines=1)
# ------------ ControlNet settings ------------
with gr.Row():
with gr.Column():
gr.Markdown("### ControlNet")
mode_radio = gr.Radio(
choices=list(MODE_MAPPING.keys()), value="gray", label="Mode"
)
strength_slider = gr.Slider(
0.0, 1.0, value=0.5, step=0.01, label="control strength"
)
with gr.Column():
seed_slider = gr.Slider(0, MAX_SEED, step=1, value=42, label="Seed")
randomize_chk = gr.Checkbox(label="Randomize seed", value=True)
guidance_slider = gr.Slider(
0.0, 10.0, step=0.1, value=3.5, label="Guidance scale"
)
steps_slider = gr.Slider(1, 50, step=1, value=24, label="Inference steps")
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=infer,
inputs=[
control_image,
prompt_txt,
mode_radio,
strength_slider,
seed_slider,
randomize_chk,
guidance_slider,
steps_slider,
],
outputs=[result_image, seed_slider, preview_image],
)
if __name__ == "__main__":
demo.launch()
|