File size: 13,997 Bytes
e0d8ab4 094f22f e0d8ab4 094f22f e0d8ab4 be63294 e0d8ab4 88cd75b e0d8ab4 1da588b e0d8ab4 1da588b e0d8ab4 094f22f e0d8ab4 094f22f e0d8ab4 094f22f e0d8ab4 094f22f e0d8ab4 094f22f e0d8ab4 d287ef6 e0d8ab4 74d2570 567bdc3 74d2570 b263e3e 74d2570 e0d8ab4 b263e3e b486903 e0d8ab4 86e526c e0d8ab4 61f6412 e0d8ab4 e711929 e0d8ab4 e711929 e0d8ab4 e711929 e0d8ab4 e711929 be63294 e0d8ab4 d3c1a54 e0d8ab4 40f177d e0d8ab4 a0bdc41 e0d8ab4 64213d1 e0d8ab4 e711929 e0d8ab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import gradio as gr
import shap
from model import UhiPredictor
import numpy as np
import pandas as pd
import plotly.graph_objects as go
ref_data = pd.read_parquet("UHI_explainer_ref_data.parquet")
cols = pd.read_parquet("UHI_explainer_ref_data.parquet").columns
MODEL = UhiPredictor("mixed_buffers_ResNet_model.keras", "mixed_buffers_standard_scaler.pkl", shap.DeepExplainer, ref_data, cols)
def filter_map(uhi, longitude, latitude):
'''
This function generates a map based on uhi prediction
'''
#set up custom data
data = [[uhi, longitude, latitude]]
# Create the plot
fig = go.Figure(go.Scattermapbox(
lat=[latitude],
lon=[longitude],
mode='markers',
marker=go.scattermapbox.Marker(
size=10
),
hoverinfo="text",
hovertemplate='<b>UHI Index</b>: %{customdata[0]}<br><b>long</b>: %{customdata[1]}<br><b>lat</b>: %{customdata[2]}<br>',
customdata=data
))
fig.update_layout(
mapbox_style="open-street-map",
hovermode='closest',
mapbox=dict(
bearing=0,
center=go.layout.mapbox.Center(
lat=40.7638,
lon=-74.0060 # Default to New York City for initial view
),
pitch=0,
zoom=10
),
)
return fig
def predict(
longitude, latitude, m150_NPCRI, m100_Ground_Elevation, avg_wind_speed,
wind_direction_deg, traffic_volume, m150_Ground_Elevation,
relative_humidity, m150_NDVI, m150_NDBI,
m300_SI, m300_NPCRI, m300_Coastal_Aerosol,
m300_Total_Building_Area_m2, m300_Building_Construction_Year, m300_Ground_Elevation,
m300_Building_Height, m300_Building_Count, m300_NDVI,
m300_NDBI, m300_Building_Density, solar_flux
):
'''
Predict the UHI index for the data inputed, Longitude and Latitude are used to generate a map
and do not affect the UHI index prediction.
'''
# Create a dictionary with input data and dataset var names
input_data = {
"150m_NPCRI": m150_NPCRI,
"100m_Ground_Elevation": m100_Ground_Elevation,
"Avg_Wind_Speed": avg_wind_speed,
"Wind_Direction_deg": wind_direction_deg,
"Traffic_Volume": traffic_volume,
"150m_Ground_Elevation": m150_Ground_Elevation,
"Relative_Humidity": relative_humidity,
"150m_NDVI": m150_NDVI,
"150m_NDBI": m150_NDBI,
"300m_SI": m300_SI,
"300m_NPCRI": m300_NPCRI,
"300m_Coastal_Aerosol": m300_Coastal_Aerosol,
"300m_Total_Building_Area_m2": m300_Total_Building_Area_m2,
"300m_Building_Construction_Year": m300_Building_Construction_Year,
"300m_Ground_Elevation": m300_Ground_Elevation,
"300m_Building_Height": m300_Building_Height,
"300m_Building_Count": m300_Building_Count,
"300m_NDVI": m300_NDVI,
"300m_NDBI": m300_NDBI,
"300m_Building_Density": m300_Building_Density,
"Solar_Flux": solar_flux
}
# Convert to DataFrame
input_df = pd.DataFrame(input_data, index=[0])
#predict
output = MODEL.predict(input_df)
# generate map
plot = filter_map(output["predicted_uhi_index"], longitude, latitude)
return float(output["predicted_uhi_index"]) , output["uhi_status"], output["feature_contributions"], plot
def load_examples(csv_file):
'''
Load examples from csv file
'''
# Read examples from CSV file
df = pd.read_csv(csv_file)
# Convert DataFrame to a list of lists
examples = df.values.tolist()
return examples
def load_interface():
'''
Configure Gradio interface
'''
#set blocks
info_page = gr.Blocks()
with info_page:
# set title and description
gr.Markdown(
"""
# ResNet model for Predicting Urban Heat Island (UHI) Index
**Contributors**: Francisco Lozano, Dalton Knapp, Adam Zizi\n
**University**: Depaul University\n
## Overview
Our project focused on creating a micro-scale machine learning model that predicts the locations and severity of the UHI effect.
The model used various datasets, including near-surface air temperatures, building footprint data, weather data, and
satellite data, to identify key drivers of UHI. This model provides insights into urban areas that are most affected by UHI,
enabling urban planners and policymakers to take effective mitigation actions. This demo only showcases the ResNet model we created, to fully
deploy this model we would integrate it with satellite imagery and weather data to provide real-time predictions.\n
## How to Use
To use the model, input the required parameters in the fields provided or select an example from the table. The model will predict the UHI index based on the inputs.
The UHI index is a measure of the intensity of the Urban Heat Island effect, with values > 1 indicating a UHI effect.
The parameters will be preprocessed and new features will be created based on the input data.
The model will also provide insights into the contributions of each feature to the UHI index prediction, as well as a map showing the location
of the prediction based on the longitude and latitude inputs. The predicted UHI index and the status (Urban Heat Island or Cooler Region) will be displayed.\n
>NOTE: The longitude and latitude inputs are used to identify the location of the prediction, but they do not affect the UHI index prediction.\n
## Final Feature Set
After preprocessing, the final feature set used in the model includes:
- 150m NPCRI (50m_1NPCRI): The average Normalized Pigment Chlorophyll Ratio Index in a 150m Buffer Zone.
- 100m_Elevation_Wind_X: Interaction between ground elevation, average wind speed, and the east-west wind component within a 100m buffer.
- 150m_Traffic_Volume: The Traffic Volume at the location.
- 150m_Elevation_Wind_Y: Interaction between ground elevation, average wind speed, and the north-south wind component within a 150m buffer.
- 150m_Humidity_NDVI: Interaction between relative humidity and the Normalized Difference Vegetation Index (NDVI) within a 150m buffer.
- 150m_Traffic_NDBI: Interaction between traffic volume and the Normalized Difference Built-up Index (NDBI) within a 150m buffer.
- 300m_SI: The average Shadow Index in a 300m Buffer Zone.
- 300m_NPCRI: The average Normalized Pigment Chlorophyll Ratio Index in a 300m Buffer Zone.
- 300m_Coastal_Aerosol: The average Coastal Aerosol in a 300m Buffer Zone.
- 300m_Total_Building_Area_m2: The Total Building Area (m2) in a 300m Buffer Zone.
- 300m_Building_Construction_Year: The average Building Construction Year in a 300m Buffer Zone.
- 300m_Ground_Elevation: The average Ground Elevation in a 300m Buffer Zone.
- 300m_Building_Wind_X: interaction between building height, average wind speed, and the east-west wind component within a 300m buffer.
- 300m_Building_Wind_Y: interaction between building height, average wind speed, and the north-south wind component within a 300m buffer.
- 300m_Elevation_Wind_Y: interaction between ground elevation, average wind speed, and the north-south wind component within a 300m buffer.
- 300m_BldgHeight_Count: interaction between building height and building count within a 300m buffer.
- 300m_TotalBuildingArea_NDVI: interaction between total building area and NDVI within a 300m buffer.
- 300m_Traffic_NDVI: interaction between traffic volume and NDVI within a 300m buffer.
- 300m_Traffic_NDBI: interaction between traffic volume and NDBI within a 300m buffer.
- 300m_Building_Aspect_Ratio: the ratio of building height to the square root of total building area within a 300m buffer.
- 300m_Sky_View_Factor: 1 - Building Density within a 300m buffer.
- 300m_Canopy_Cover_Ratio: the ratio of NDVI to Building Density within a 300m buffer.
- 300m_GHG_Proxy: interaction between building count, traffic volume, and solar flux within a 300m buffer.\n
## Metrics
For a quick look of our model performance, here is its r2 score:
```
Train r2 score: 0.9853446142702935
Test r2 score: 0.9625555699901284
```
## Repository
The code for this project is available on GitHub. It includes our Jupyter notebooks and Final Report.\n
[Project Repo](https://github.com/FranciscoLozCoding/cooling_with_code)
"""
)
# set inputs and outputs for the model
longitude = gr.Number(label="Longitude", precision=5, info="The Longitude of the location")
latitude = gr.Number(label="Latitude", precision=5, info="The Latitude of the location")
m150_NPCRI = gr.Number(label="150m NPCRI (50m_1NPCRI)", precision=5, info="The average Normalized Difference Vegetation Index in a 150m Buffer Zone. NPCRI is a remote sensing index designed to estimate the chlorophyll content in vegetation.")
m100_Ground_Elevation = gr.Number(label="100m Ground Elevation", precision=5, info="The average Ground Elevation in a 100m Buffer Zone")
avg_wind_speed = gr.Number(label="Avg Wind Speed [m/s]", precision=5, info="The average Wind Speed [m/s] at the location")
wind_direction = gr.Number(label="Wind Direction [degrees]", precision=5, info="The average Wind Direction [degrees] at the location")
traffic_volume = gr.Number(label="Traffic Volume", precision=5, info="The Traffic Volume at the location")
m150_Ground_Elevation = gr.Number(label="150m Ground Elevation", precision=5, info="The average Ground Elevation in a 150m Buffer Zone")
relative_humidity = gr.Number(label="Relative Humidity [percent]", precision=5, info="The average Relative Humidity [percent] at the location")
m150_NDVI = gr.Number(label="150m NDVI", precision=5, info="The average Normalized Difference Vegetation Index in a 150m Buffer Zone. NDVI is used to measure the greenness of vegetation.")
m150_NDBI = gr.Number(label="150m NDBI", precision=5, info="The average Normalized Difference Built-up Index in a 150m Buffer Zone. NDBI is a ratio-based index to highlight built-up areas or areas of urbanization")
m300_SI = gr.Number(label="300m SI", precision=5, info="The average Shadow Index in a 300m Buffer Zone. SI helps in identifying areas where shadows occur.")
m300_NPCRI = gr.Number(label="300m NPCRI", precision=5, info="The average Normalized Pigment Chlorophyll Ratio Index in a 300m Buffer Zone. NPCRI is a remote sensing index designed to estimate the chlorophyll content in vegetation.")
m300_Coastal_Aerosol = gr.Number(label="300m Coastal Aerosol", precision=5, info="The average Coastal Aerosol in a 300m Buffer Zone. Coastal aerosol refers to aerosol particles (tiny solid or liquid particles suspended in the atmosphere) that are found in or around coastal regions.")
m300_Total_Building_Area_m2 = gr.Number(label="300m Total Building Area(m2)", precision=5, info="The Total Building Area in a 300m Buffer Zone")
m300_Building_Construction_Year = gr.Number(label="300m Building Construction Year", precision=5, info="The average Building Construction Year in a 300m Buffer Zone")
m300_Ground_Elevation = gr.Number(label="300m Ground Elevation", precision=5, info="The average Ground Elevation in a 300m Buffer Zone")
m300_Building_Height = gr.Number(label="300m Building Height", precision=5, info="The average Building Height in a 300m Buffer Zone")
m300_Building_Count = gr.Number(label="300m Building Count", precision=5, info="The average Building Count in a 300m Buffer Zone")
m300_NDVI = gr.Number(label="300m NDVI", precision=5, info="The average Normalized Difference Vegetation Index in a 300m Buffer Zone. NDVI is used to measure the greenness of vegetation.")
m300_NDBI = gr.Number(label="300m NDBI", precision=5, info="The average Normalized Difference Built-up Index in a 300m Buffer Zone. NDBI is a ratio-based index to highlight built-up areas or areas of urbanization")
m300_Building_Density = gr.Number(label="300m Building Density", precision=5, info="The average Building Density in a 300m Buffer Zone")
solar_flux = gr.Number(label="Solar Flux [W/m^2]", precision=5, info="The average Solar Flux [W/m^2] at the location")
inputs = [longitude, latitude, m150_NPCRI, m100_Ground_Elevation, avg_wind_speed, wind_direction,
traffic_volume, m150_Ground_Elevation, relative_humidity, m150_NDVI,
m150_NDBI, m300_SI, m300_NPCRI, m300_Coastal_Aerosol, m300_Total_Building_Area_m2,
m300_Building_Construction_Year, m300_Ground_Elevation, m300_Building_Height, m300_Building_Count,
m300_NDVI, m300_NDBI, m300_Building_Density, solar_flux]
uhi = gr.Number(label="Predicted UHI Index", precision=5)
# set model explainer outputs
uhi_label = gr.Label(label="Predicted Status based on UHI Index")
feature_contributions = gr.JSON(label="Feature Contributions")
# Urban Location
plot = gr.Plot(label="Urban Location")
model_page = gr.Interface(
predict,
inputs=inputs,
outputs=[uhi, uhi_label, feature_contributions, plot],
examples=load_examples("examples.csv"),
cache_examples=False,
title="Interact with The ResNet UHI Model",
description="This model predicts the Urban Heat Island (UHI) index based on various environmental and urban factors. Adjust the inputs to see how they affect the UHI index prediction.",
)
iface = gr.TabbedInterface(
[info_page, model_page],
["Information", "UHI Model"]
)
iface.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/"], share=True)
if __name__ == "__main__":
load_interface()
|