File size: 4,492 Bytes
5f25427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import json
import logging
import os
from pathlib import Path
from typing import List
from uuid import uuid4

import gradio as gr
import openai
from langchain.chat_models import ChatOpenAI
from langchain.prompts import HumanMessagePromptTemplate
from langchain.schema import HumanMessage, SystemMessage
from youtube_dl import YoutubeDL

MODELS_NAMES = ["gpt-3.5-turbo", "gpt-4"]

logging.basicConfig(
    format="[%(asctime)s %(levelname)s]: %(message)s", level=logging.DEBUG
)


system_message = SystemMessage(content=Path("prompts/system.prompt").read_text())
human_message_prompt_template = HumanMessagePromptTemplate.from_template(
    Path("prompts/template.prompt").read_text()
)


def download_video_as_mp3(video_url: str, output_filename: str):
    ydl_opts = {
        "format": "bestaudio/best",
        "outtmpl": output_filename,
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "mp3",
                "preferredquality": "192",
            }
        ],
    }

    with YoutubeDL(ydl_opts) as ydl:
        ydl.download([video_url])


def get_transcription(youtube_url: str):
    logging.info(f"Transcribing {youtube_url}")
    output_filename = Path(f"{str(uuid4())}.mp3")
    download_video_as_mp3(youtube_url, str(output_filename))
    logging.debug(f"video downloaded at {str(output_filename)}")
    with output_filename.open("rb") as audio_file:
        transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
    logging.info(f"Done!")
    output_filename.unlink()
    return transcript


def get_youtube_video_info(youtube_transcription: str, messages: List, chat):
    logging.info("Running GPT")
    human_message = human_message_prompt_template.format(
        youtube_transcription=youtube_transcription
    )
    messages.append(human_message)
    reply = chat(messages)
    messages.append(reply)
    logging.info(f"Done!")
    # we don't want the first ever message, too long
    chatbot_messages = [("", reply.content)]
    return chatbot_messages, messages


def run_message_on_chatbot(chat, message: str, chatbot_messages, messages):
    logging.info("asking question to GPT")
    messages.append(HumanMessage(content=message))
    reply = chat(messages)
    messages.append(reply)
    logging.debug(f"reply = {reply.content}")
    logging.info(f"Done!")
    chatbot_messages.append((message, messages[-1].content))
    return "", chatbot_messages, messages


def youtube_guru_button_handler(
    youtube_url: str, messages: List, temperature: float, model_name: str
):
    chat = ChatOpenAI(model_name=model_name, temperature=temperature)
    transcription = get_transcription(youtube_url)
    chatbot_messages, messages = get_youtube_video_info(transcription, messages, chat)
    return chatbot_messages, messages, chat


def on_clear_button_click():
    return "", [], [messages]


with gr.Blocks() as demo:
    messages = gr.State([system_message])
    youtube_transcription = gr.State("")
    model_selected = gr.State()
    chat = gr.State()

    with gr.Column():
        gr.Markdown("# Welcome to YouTubeGuru!")

        youtube_url = gr.Textbox(
            label="video url", placeholder="https://www.youtube.com/watch?v=dQw4w9WgXcQ"
        )
        chatbot = gr.Chatbot()
        msg = gr.Textbox(label="chat input")
        msg.submit(
            run_message_on_chatbot,
            [chat, msg, chatbot, messages],
            [msg, chatbot, messages],
        )
        with gr.Row():
            with gr.Column():
                clear = gr.Button("Clear")
                clear.click(
                    on_clear_button_click,
                    [],
                    [youtube_transcription, chatbot, messages],
                    queue=False,
                )
            with gr.Accordion("Settings", open=False):
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.7,
                    step=0.1,
                    label="temperate",
                    interactive=True,
                )
                model_name = gr.Dropdown(
                    choices=MODELS_NAMES, value=MODELS_NAMES[0], label="model"
                )

        button = gr.Button("Run 🚀")
        button.click(
            youtube_guru_button_handler,
            inputs=[youtube_url, messages, temperature, model_name],
            outputs=[chatbot, messages, chat],
        )