File size: 21,651 Bytes
0ef7477
6454466
89d86b2
 
 
 
 
ec97c82
7978f1a
6454466
7978f1a
 
b08d1d7
e884311
7978f1a
 
6454466
89d86b2
6454466
89d86b2
 
 
 
 
 
 
 
6454466
 
89d86b2
6454466
89d86b2
 
a3a27cd
89d86b2
7978f1a
6454466
e884311
6454466
89d86b2
 
 
 
 
 
7978f1a
e884311
 
 
b08d1d7
e884311
 
 
 
 
 
 
 
 
 
 
 
 
b08d1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef7477
89d86b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e884311
89d86b2
 
 
 
 
 
 
 
 
 
 
e884311
 
 
 
 
 
 
 
 
 
89d86b2
 
 
 
 
 
b08d1d7
7978f1a
6454466
b08d1d7
6454466
0ef7477
 
 
 
 
 
89d86b2
0ef7477
 
89d86b2
0ef7477
f611921
0ef7477
 
5e75927
0ef7477
 
 
 
 
 
 
89d86b2
0ef7477
 
89d86b2
0ef7477
 
7978f1a
b08d1d7
0ef7477
b08d1d7
0ef7477
 
89d86b2
0ef7477
b08d1d7
 
89d86b2
b08d1d7
0ef7477
 
 
 
 
 
 
 
 
b08d1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef7477
b08d1d7
0ef7477
 
 
 
 
 
 
b08d1d7
0ef7477
 
 
 
 
 
 
 
 
 
 
 
 
b08d1d7
 
 
 
 
 
 
 
 
 
 
7978f1a
6454466
89d86b2
6454466
b08d1d7
89d86b2
 
 
 
 
 
 
 
 
 
 
 
0ef7477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89d86b2
0ef7477
89d86b2
0ef7477
 
89d86b2
 
0ef7477
89d86b2
b08d1d7
0ef7477
89d86b2
 
0ef7477
7978f1a
89d86b2
b08d1d7
 
 
 
 
 
0ef7477
 
b08d1d7
 
0ef7477
89d86b2
 
 
 
 
b08d1d7
0ef7477
89d86b2
 
 
 
 
 
 
b08d1d7
0ef7477
b08d1d7
 
 
 
0ef7477
b08d1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89d86b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef7477
89d86b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f611921
89d86b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7978f1a
89d86b2
 
 
 
 
 
 
 
 
b08d1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89d86b2
 
b08d1d7
89d86b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7697ab4
89d86b2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# app.py - Final Version with Direct Text Generation

import os
import gc
import logging
import traceback
import time
import transformers
import torch
import gradio as gr
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig
)

###############################################################################
# Configure Logging
###############################################################################
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler()
    ]
)
logger = logging.getLogger("DamageScan-App")

###############################################################################
# Model Configuration
###############################################################################
MODEL_ID = "FrameRateTech/DamageScan-llama-8b-instruct-merged"
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful, and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question is not clear or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""

###############################################################################
# Memory Management
###############################################################################
def optimize_memory():
    """Optimize memory usage by clearing caches and forcing garbage collection"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
    logger.info("Memory optimized: caches cleared and garbage collected")

###############################################################################
# Model Loading with Error Handling
###############################################################################
def load_model_and_tokenizer():
    """Load the model with comprehensive error handling and logging"""
    logger.info(f"Loading model: {MODEL_ID}")
    logger.info(f"Transformers version: {transformers.__version__}")
    logger.info(f"PyTorch version: {torch.__version__}")
    
    # Check available devices
    device_info = {
        "cuda_available": torch.cuda.is_available(),
        "device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
        "mps_available": hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
    }
    logger.info(f"Device information: {device_info}")
    
    # First try to load a base tokenizer for the pipeline - doesn't need to be perfect
    try:
        logger.info("Loading base Llama tokenizer for pipeline...")
        # Use the base model's tokenizer, which should be compatible
        tokenizer = AutoTokenizer.from_pretrained(
            "meta-llama/Llama-3.1-8B-Instruct",
            trust_remote_code=True
        )
        logger.info(f"Base tokenizer loaded: {type(tokenizer).__name__}")
    except Exception as e:
        logger.warning(f"Could not load base tokenizer: {str(e)}")
        logger.warning("Will try to initialize pipeline without explicit tokenizer")
        tokenizer = None
    
    # Load model with detailed error logging
    try:
        logger.info("Loading model...")
        model_start = time.time()
        
        # Determine device map strategy
        if device_info["cuda_available"]:
            device_map = "auto"
            torch_dtype = torch.float16
            logger.info("Using 'auto' device map for CUDA with float16 precision")
        elif device_info["mps_available"]:
            device_map = {"": "mps"}
            torch_dtype = torch.float16
            logger.info("Using MPS device with float16 precision")
        else:
            device_map = {"": "cpu"}
            torch_dtype = torch.float32
            logger.info("Using CPU with float32 precision")
        
        # Load the model
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_ID,
            torch_dtype=torch_dtype,
            device_map=device_map,
            trust_remote_code=True,
        )
        model.eval()
        model_load_time = time.time() - model_start
        logger.info(f"Model loaded successfully in {model_load_time:.2f} seconds")
        
        # Log model info
        try:
            model_info = {
                "model_type": model.config.model_type,
                "hidden_size": model.config.hidden_size,
                "vocab_size": model.config.vocab_size,
                "num_hidden_layers": model.config.num_hidden_layers
            }
            logger.info(f"Model properties: {model_info}")
        except Exception as e:
            logger.warning(f"Could not log all model properties: {str(e)}")
        
    except Exception as e:
        logger.error(f"Failed to load model: {str(e)}")
        logger.error(traceback.format_exc())
        raise RuntimeError(f"Failed to load model: {str(e)}")
    
    return model, tokenizer

###############################################################################
# Direct Text Generation
###############################################################################
def format_prompt(messages, system_prompt=DEFAULT_SYSTEM_PROMPT):
    """
    Format messages into a simplified prompt for the model.
    This is an ultra-simplified version that just uses plain text.
    """
    logger.info(f"Formatting prompt with {len(messages)} messages")
    
    # Start with the system prompt
    prompt = f"SYSTEM: {system_prompt}\n\n"
    
    # Add all messages
    for msg in messages:
        role = msg["role"] if isinstance(msg, dict) else msg[0]
        content = msg["content"] if isinstance(msg, dict) else msg[1]
        
        if role.lower() == "system":
            # Skip additional system messages as we already added one
            continue
        elif role.lower() == "user" or role.lower() == "human":
            prompt += f"USER: {content}\n\n"
        elif role.lower() == "assistant" or role.lower() == "ai":
            prompt += f"ASSISTANT: {content}\n\n"
    
    # Add the final assistant prefix for the model to continue
    prompt += "ASSISTANT: "
    
    logger.info(f"Formatted prompt (length: {len(prompt)})")
    return prompt

def generate_text(model, tokenizer, prompt, temperature=0.7, top_p=0.9, max_new_tokens=256):
    """
    Generate text using the pipeline with explicit tokenizer.
    """
    logger.info(f"Generating text with temp={temperature}, top_p={top_p}, max_tokens={max_new_tokens}")
    
    try:
        # Log what we're doing
        logger.info(f"Input prompt length: {len(prompt)}")
        
        # Generation config
        gen_config = {
            "temperature": temperature,
            "top_p": top_p,
            "do_sample": True,
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": 1.1,
        }
        logger.info(f"Generation config: {gen_config}")
        
        # Create pipeline with explicit tokenizer if available
        if tokenizer:
            logger.info("Creating pipeline with explicit tokenizer")
            pipe = transformers.pipeline(
                "text-generation",
                model=model,
                tokenizer=tokenizer,
                device_map=model.device_map if hasattr(model, "device_map") else "auto"
            )
        else:
            # Fallback approach - try to create a direct generate function
            logger.info("No tokenizer available, using direct model.generate")
            
            # Simple direct generation
            generation_start = time.time()
            
            # Encode input with default settings
            inputs = model.tokenize_using_default(prompt)
            inputs = {k: v.to(model.device) if torch.is_tensor(v) else v for k, v in inputs.items()}
            
            # Generate with model directly
            with torch.no_grad():
                outputs = model.generate(
                    **inputs,
                    **gen_config
                )
            
            # Decode using model's default
            generated_text = model.decode_using_default(outputs[0])
            
            generation_time = time.time() - generation_start
            logger.info(f"Direct generation completed in {generation_time:.2f} seconds")
            
            # Extract just the new text
            response = generated_text[len(prompt):].strip()
            logger.info(f"Generated response length: {len(response)}")
            
            return response
        
        # Normal pipeline-based generation
        generation_start = time.time()
        outputs = pipe(
            prompt,
            return_full_text=True,
            **gen_config
        )
        generation_time = time.time() - generation_start
        logger.info(f"Pipeline generation completed in {generation_time:.2f} seconds")
        
        # Extract the generated text
        generated_text = outputs[0]["generated_text"]
        
        # Extract just the assistant's response
        response = generated_text[len(prompt):].strip()
        logger.info(f"Generated response length: {len(response)}")
        
        return response
        
    except Exception as e:
        logger.error(f"Error in generate_text: {e}")
        logger.error(traceback.format_exc())
        
        # Try one more fallback approach with manual text generation
        try:
            logger.info("Trying fallback manual text generation approach")
            
            # Very minimal approach - just return a message
            return "I'm having trouble generating a response right now. Please try again with different parameters or a different question."
            
        except Exception as e2:
            logger.error(f"Fallback approach also failed: {e2}")
            return "I encountered an error while generating a response. Please try again."

###############################################################################
# Gradio Interface
###############################################################################
def build_gradio_interface(model, tokenizer):
    """Build and launch the Gradio interface"""
    logger.info("Building Gradio interface")
    
    def user_submit(message_history, user_text, temp, top_p, max_tokens, system_message):
        """Handle user message submission"""
        logger.info(f"Received user message: '{user_text[:50]}...' (length: {len(user_text)})")
        
        if not user_text.strip():
            logger.warning("Empty user message, skipping processing")
            return message_history, ""
        
        try:
            # Make sure message_history is properly initialized
            if message_history is None:
                message_history = []
            
            # Format message_history as a list of dictionaries if it's not already
            formatted_history = []
            for msg in message_history:
                if isinstance(msg, tuple):
                    role = "user" if msg[0] == "user" or msg[0] == "human" else "assistant"
                    formatted_history.append({"role": role, "content": msg[1]})
                elif isinstance(msg, dict):
                    formatted_history.append(msg)
            
            # Add system message if needed
            if not formatted_history or formatted_history[0]["role"] != "system":
                formatted_history.insert(0, {"role": "system", "content": system_message})
            
            # Add user message to history
            formatted_history.append({"role": "user", "content": user_text})
            
            # Format the prompt
            prompt = format_prompt(formatted_history)
            
            # Generate response
            assistant_response = generate_text(
                model, 
                tokenizer,
                prompt, 
                temperature=temp, 
                top_p=top_p, 
                max_new_tokens=max_tokens
            )
            
            # Add assistant message to formatted history
            formatted_history.append({"role": "assistant", "content": assistant_response})
            
            # Convert back to format expected by Gradio's Chatbot with type="messages"
            # For type="messages", we need a list of dicts with role/content keys
            display_history = []
            for msg in formatted_history:
                if msg["role"] == "system":
                    continue  # Skip system messages
                display_history.append({"role": msg["role"], "content": msg["content"]})
            
            logger.info(f"Added assistant response (length: {len(assistant_response)})")
            
            # Optimize memory after generation
            optimize_memory()
            
            return display_history, ""
            
        except Exception as e:
            logger.error(f"Error in user_submit: {str(e)}")
            logger.error(traceback.format_exc())
            
            # Return original message history plus error message
            error_msg = "I encountered an error processing your request. Please try again."
            
            # Create error messages in the correct format
            if message_history is None:
                return [
                    {"role": "user", "content": user_text}, 
                    {"role": "assistant", "content": error_msg}
                ], ""
            else:
                # Try to safely convert to message format
                try:
                    # If already in dict format, just append
                    if message_history and isinstance(message_history[0], dict):
                        message_history.append({"role": "user", "content": user_text})
                        message_history.append({"role": "assistant", "content": error_msg})
                    # If in tuple format, convert to dict format
                    else:
                        new_history = []
                        for msg in message_history:
                            if isinstance(msg, tuple):
                                role = "user" if msg[0] == "user" else "assistant"
                                new_history.append({"role": role, "content": msg[1]})
                            else:
                                new_history.append(msg)
                        new_history.append({"role": "user", "content": user_text})
                        new_history.append({"role": "assistant", "content": error_msg})
                        message_history = new_history
                    
                    return message_history, ""
                except:
                    # Last resort fallback
                    return [
                        {"role": "user", "content": user_text}, 
                        {"role": "assistant", "content": error_msg}
                    ], ""
    
    def clear_chat():
        """Clear the chat history"""
        logger.info("Clearing chat history")
        optimize_memory()
        return [], ""
    
    # Define the Gradio interface
    with gr.Blocks(css="footer {visibility: hidden}") as demo:
        gr.Markdown("<h1 align='center'>DamageScan 8B Instruct Chatbot</h1>")
        gr.Markdown("<p align='center'>Powered by FrameRateTech/DamageScan-llama-8b-instruct-merged</p>")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Chat History",
                    height=600,
                    type="messages",  # Use messages format (new style)
                    avatar_images=(None, "https://huggingface.co/spaces/FrameRateTech/DamageScan-8b-instruct-chat/resolve/main/avatar.png"),
                )
                
                with gr.Row():
                    with gr.Column(scale=8):
                        user_input = gr.Textbox(
                            lines=3,
                            label="Your Message",
                            placeholder="Type your message here...",
                            show_copy_button=True
                        )
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button("Send", variant="primary")
                        clear_btn = gr.Button("Clear Chat")
            
            with gr.Column(scale=1):
                gr.Markdown("### System Prompt")
                system_prompt_input = gr.Textbox(
                    lines=5,
                    label="System Instructions",
                    value=DEFAULT_SYSTEM_PROMPT,
                    show_copy_button=True
                )
                
                gr.Markdown("### Generation Settings")
                temperature_slider = gr.Slider(
                    minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature",
                    info="Higher values make output more random, lower values more deterministic"
                )
                top_p_slider = gr.Slider(
                    minimum=0.5, maximum=1.0, value=0.9, step=0.05, label="Top-p",
                    info="Controls diversity via nucleus sampling"
                )
                max_tokens_slider = gr.Slider(
                    minimum=64, maximum=1024, value=256, step=64, label="Max New Tokens",
                    info="Maximum length of generated response"
                )
                
                gr.Markdown("### Tips")
                gr.Markdown("""
                * Lower temperature (0.1-0.3) for factual responses
                * Higher temperature (0.7-1.0) for creative tasks
                * Reduce max tokens if responses are too long
                * Clear chat if the model gets confused
                """)

        # Set up event handlers
        submit_btn.click(
            user_submit,
            inputs=[chatbot, user_input, temperature_slider, top_p_slider, max_tokens_slider, system_prompt_input],
            outputs=[chatbot, user_input],
        )
        user_input.submit(
            user_submit,
            inputs=[chatbot, user_input, temperature_slider, top_p_slider, max_tokens_slider, system_prompt_input],
            outputs=[chatbot, user_input],
        )
        clear_btn.click(
            clear_chat,
            outputs=[chatbot, user_input]
        )
        
        # Add example prompts
        gr.Examples(
            examples=[
                ["Can you explain how the Large Hadron Collider works?"],
                ["Write a short story about a robot who learns to paint"],
                ["What are three ways to improve productivity when working from home?"],
                ["Explain quantum computing to me like I'm 10 years old"],
            ],
            inputs=user_input,
            label="Example Prompts"
        )
        
    return demo

###############################################################################
# Main Application Logic
###############################################################################
def main():
    """Main application entry point"""
    try:
        logger.info("Starting DamageScan 8B Instruct application")
        logger.info(f"Environment: CUDA_VISIBLE_DEVICES={os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
        
        # Load model and tokenizer
        model, tokenizer = load_model_and_tokenizer()
        
        # Add manual tokenization methods to model if they don't exist
        if not hasattr(model, "tokenize_using_default"):
            logger.info("Adding default tokenization methods to model")
            
            def tokenize_using_default(text):
                """Very basic tokenization that just returns a dummy"""
                logger.info("Using minimal default tokenization")
                # Return dummy input_ids - this is a last resort
                return {"input_ids": torch.tensor([[1]]).to(model.device)}
            
            def decode_using_default(token_ids):
                """Very basic decoding that just returns a message"""
                logger.info("Using minimal default decoding")
                return "I'm having trouble generating a proper response."
            
            # Add methods to model
            model.tokenize_using_default = tokenize_using_default
            model.decode_using_default = decode_using_default
        
        # Build and launch Gradio interface
        demo = build_gradio_interface(model, tokenizer)
        
        # Launch the app
        logger.info("Launching Gradio interface")
        demo.queue().launch(
            share=False,
            debug=False,
            show_error=True,
            favicon_path="https://huggingface.co/spaces/FrameRateTech/DamageScan-8b-instruct-chat/resolve/main/favicon.ico"
        )
        
    except Exception as e:
        logger.error(f"Application startup failed: {str(e)}")
        logger.error(traceback.format_exc())
        
        # Create a minimal fallback UI to show the error
        with gr.Blocks() as fallback_demo:
            gr.Markdown("# ⚠️ DamageScan 8B Application Error")
            gr.Markdown(f"The application encountered an error during startup:\n\n```\n{str(e)}\n```")
            gr.Markdown("Please check the logs for more details or try again later.")
        
        fallback_demo.launch()

if __name__ == "__main__":
    main()