File size: 1,200 Bytes
de2af77 06f56e7 de2af77 50112ef 8069c5d 50112ef fbb715a 90cdb3b 0e3faaa 50112ef 2d662a2 175905a 926cfaf 8069c5d 06cbf78 8069c5d 0e3faaa 175905a 47d0c0c 8069c5d 2d662a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import streamlit as st
from datasets import load_dataset
import pandas as pd
from datasets import load_dataset
dataset_dict = load_dataset('HUPD/hupd',
name='sample',
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
icpr_label=None,
train_filing_start_date='2016-01-01',
train_filing_end_date='2016-01-31',
val_filing_start_date='2017-01-22',
val_filing_end_date='2017-01-31',
)
df = pd.DataFrame.from_dict(dataset_dict["train"])
df = pd.DataFrame(df,columns =['patent_number','decision', 'abstract', 'claims','filing_date'])
#st.dataframe(df)
PAN = df['patent_number'].drop_duplicates()
#make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN)
make_choice = st.selectbox('Select the Patent Application Number:', PAN)
form = st.form(key='patent-form')
pd.options.display.max_colwidth = 100000
abstract = df["abstract"].loc[df["patent_number"] == make_choice]
#st.markdown(f"Publication abstract is **{abstract}** π")
st.write ("Publication Abstract" : abstract)
claims = df["claims"].loc[df["patent_number"] == make_choice]
#st.markdown(f"Publication abstract is **{claims}** π")
|