File size: 7,355 Bytes
4bfb360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from PIL import Image
import gradio as gr
from imagenet_en_cn import IMAGENET_1K_CLASSES
from huggingface_hub import hf_hub_download
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)

import time
import argparse
from tokenizer_image.vq_model import VQ_models
from models.gpt import GPT_models
from models.generate import generate

device = "cuda"

model2ckpt = {
    "GPT-XL": ("vq_ds16_c2i.pt", "c2i_XL_384.pt", 384),
    "GPT-B": ("vq_ds16_c2i.pt", "c2i_B_256.pt", 256),
}

def load_model(args):
    ckpt_folder = "./"
    vq_ckpt, gpt_ckpt, image_size = model2ckpt[args.gpt_model]
    hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=vq_ckpt, local_dir=ckpt_folder)
    hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=gpt_ckpt, local_dir=ckpt_folder)
    # create and load model
    vq_model = VQ_models[args.vq_model](
        codebook_size=args.codebook_size,
        codebook_embed_dim=args.codebook_embed_dim)
    vq_model.to(device)
    vq_model.eval()
    checkpoint = torch.load(f"{ckpt_folder}{vq_ckpt}", map_location="cpu")
    vq_model.load_state_dict(checkpoint["model"])
    del checkpoint
    print(f"image tokenizer is loaded")

    # create and load gpt model
    precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
    latent_size = image_size // args.downsample_size
    gpt_model = GPT_models[args.gpt_model](
        vocab_size=args.codebook_size,
        block_size=latent_size ** 2,
        num_classes=args.num_classes,
        cls_token_num=args.cls_token_num,
        model_type=args.gpt_type,
    ).to(device=device, dtype=precision)
    
    checkpoint = torch.load(f"{ckpt_folder}{gpt_ckpt}", map_location="cpu")
    if args.from_fsdp: # fspd
        model_weight = checkpoint
    elif "model" in checkpoint:  # ddp
        model_weight = checkpoint["model"]
    elif "module" in checkpoint: # deepspeed
        model_weight = checkpoint["module"]
    elif "state_dict" in checkpoint:
        model_weight = checkpoint["state_dict"]
    else:
        raise Exception("please check model weight")
    # if 'freqs_cis' in model_weight:
    #     model_weight.pop('freqs_cis')
    gpt_model.load_state_dict(model_weight, strict=False)
    gpt_model.eval()
    del checkpoint
    print(f"gpt model is loaded")

    if args.compile:
        print(f"compiling the model...")
        gpt_model = torch.compile(
            gpt_model,
            mode="reduce-overhead",
            fullgraph=True
        ) # requires PyTorch 2.0 (optional)
    else:
        print(f"no need to compile model in demo") 

    return vq_model, gpt_model, image_size


def infer(cfg_scale, top_k, top_p, temperature, class_label, seed):
    n = 4
    latent_size = image_size // args.downsample_size
    # Labels to condition the model with (feel free to change):
    class_labels = [class_label for _ in range(n)]
    c_indices = torch.tensor(class_labels, device=device)
    qzshape = [len(class_labels), args.codebook_embed_dim, latent_size, latent_size]

    t1 = time.time()
    torch.manual_seed(seed)
    index_sample = generate(
        gpt_model, c_indices, latent_size ** 2,
        cfg_scale=cfg_scale, cfg_interval=args.cfg_interval,
        temperature=temperature, top_k=top_k,
        top_p=top_p, sample_logits=True, 
        )
    sampling_time = time.time() - t1
    print(f"gpt sampling takes about {sampling_time:.2f} seconds.")    

    t2 = time.time()
    samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
    decoder_time = time.time() - t2
    print(f"decoder takes about {decoder_time:.2f} seconds.")
    # Convert to PIL.Image format:
    samples = samples.mul(127.5).add_(128.0).clamp_(0, 255).permute(0, 2, 3, 1).to("cpu", torch.uint8).numpy()
    samples = [Image.fromarray(sample) for sample in samples]
    return samples


parser = argparse.ArgumentParser()
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
parser.add_argument("--from-fsdp", action='store_true')
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) 
parser.add_argument("--compile", action='store_true', default=False)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=4.0)
parser.add_argument("--cfg-interval", type=float, default=-1)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
args = parser.parse_args()

vq_model, gpt_model, image_size = load_model(args)

with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center'>Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation</h1>")

    with gr.Tabs():
        with gr.TabItem('Generate'):
            with gr.Row():
                with gr.Column():
                    # with gr.Row():
                    #     image_size = gr.Radio(choices=[384], value=384, label='Peize Model Resolution')
                    with gr.Row():
                        i1k_class = gr.Dropdown(
                            list(IMAGENET_1K_CLASSES.values()),
                            value='Eskimo dog, husky [爱斯基摩犬,哈士奇]',
                            type="index", label='ImageNet-1K Class'
                        )
                    cfg_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=4.0, label='Classifier-free Guidance Scale')
                    top_k = gr.Slider(minimum=1, maximum=16384, step=1, value=4000, label='Top-K')
                    top_p = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label="Top-P")
                    temperature = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label='Temperature')
                    seed = gr.Slider(minimum=0, maximum=1000, step=1, value=42, label='Seed')
                    # seed = gr.Number(value=0, label='Seed')
                    button = gr.Button("Generate", variant="primary")
                with gr.Column():
                    output = gr.Gallery(label='Generated Images', height=700)
                    button.click(infer, inputs=[cfg_scale, top_k, top_p, temperature, i1k_class, seed], outputs=[output])
    demo.queue()
    demo.launch(debug=True)