Spaces:
Runtime error
Runtime error
File size: 6,594 Bytes
4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f 4bfb360 4d20c2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
from PIL import Image
import gradio as gr
from imagenet_en_cn import IMAGENET_1K_CLASSES
from huggingface_hub import hf_hub_download
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)
from vllm import SamplingParams
import time
import argparse
from tokenizer_image.vq_model import VQ_models
# from models.generate import generate
from serve.llm import LLM
device = "cuda"
model2ckpt = {
"GPT-XL": ("vq_ds16_c2i.pt", "c2i_XL_384.pt", 384),
"GPT-B": ("vq_ds16_c2i.pt", "c2i_B_256.pt", 256),
}
def load_model(args):
ckpt_folder = "./"
vq_ckpt, gpt_ckpt, image_size = model2ckpt[args.gpt_model]
hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=vq_ckpt, local_dir=ckpt_folder)
hf_hub_download(repo_id="FoundationVision/LlamaGen", filename=gpt_ckpt, local_dir=ckpt_folder)
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(f"{ckpt_folder}{vq_ckpt}", map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
print(f"image tokenizer is loaded")
# Create an LLM.
args.image_size = image_size
args.gpt_ckpt = f"{ckpt_folder}{gpt_ckpt}"
llm = LLM(
args=args,
model='serve/fake_json/{}.json'.format(args.gpt_model),
gpu_memory_utilization=0.6,
skip_tokenizer_init=True)
print(f"gpt model is loaded")
return vq_model, llm, image_size
def infer(cfg_scale, top_k, top_p, temperature, class_label, seed):
n = 4
latent_size = image_size // args.downsample_size
# Labels to condition the model with (feel free to change):
class_labels = [class_label for _ in range(n)]
qzshape = [len(class_labels), args.codebook_embed_dim, latent_size, latent_size]
prompt_token_ids = [[cind] for cind in class_labels]
if cfg_scale > 1.0:
prompt_token_ids.extend([[args.num_classes] for _ in range(len(prompt_token_ids))])
# Create a sampling params object.
sampling_params = SamplingParams(
temperature=temperature, top_p=top_p, top_k=top_k,
max_tokens=latent_size ** 2)
t1 = time.time()
torch.manual_seed(seed)
outputs = llm.generate(
prompt_token_ids=prompt_token_ids,
sampling_params=sampling_params,
use_tqdm=False)
sampling_time = time.time() - t1
print(f"gpt sampling takes about {sampling_time:.2f} seconds.")
index_sample = torch.tensor([output.outputs[0].token_ids for output in outputs], device=device)
if args.cfg_scale > 1.0:
index_sample = index_sample[:len(class_labels)]
t2 = time.time()
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
decoder_time = time.time() - t2
print(f"decoder takes about {decoder_time:.2f} seconds.")
# Convert to PIL.Image format:
samples = samples.mul(127.5).add_(128.0).clamp_(0, 255).permute(0, 2, 3, 1).to("cpu", torch.uint8).numpy()
samples = [Image.fromarray(sample) for sample in samples]
return samples
parser = argparse.ArgumentParser()
parser.add_argument("--gpt-model", type=str, default="GPT-XL")
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
parser.add_argument("--from-fsdp", action='store_true')
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--compile", action='store_true', default=False)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=4.0)
parser.add_argument("--cfg-interval", type=float, default=-1)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
args = parser.parse_args()
vq_model, llm, image_size = load_model(args)
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center'>Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation</h1>")
with gr.Tabs():
with gr.TabItem('Generate'):
with gr.Row():
with gr.Column():
# with gr.Row():
# image_size = gr.Radio(choices=[384], value=384, label='Peize Model Resolution')
with gr.Row():
i1k_class = gr.Dropdown(
list(IMAGENET_1K_CLASSES.values()),
value='Eskimo dog, husky [爱斯基摩犬,哈士奇]',
type="index", label='ImageNet-1K Class'
)
cfg_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=4.0, label='Classifier-free Guidance Scale')
top_k = gr.Slider(minimum=1, maximum=16384, step=1, value=4000, label='Top-K')
top_p = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label="Top-P")
temperature = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label='Temperature')
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=42, label='Seed')
# seed = gr.Number(value=0, label='Seed')
button = gr.Button("Generate", variant="primary")
with gr.Column():
output = gr.Gallery(label='Generated Images', height=700)
button.click(infer, inputs=[cfg_scale, top_k, top_p, temperature, i1k_class, seed], outputs=[output])
demo.queue()
demo.launch(debug=True)
|