File size: 5,277 Bytes
4d20c2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Modified from:
#   taming-transformers:  https://github.com/CompVis/taming-transformers
import functools
import torch
import torch.nn as nn


class NLayerDiscriminator(nn.Module):
    """Defines a PatchGAN discriminator as in Pix2Pix
        --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
    """
    def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
        """Construct a PatchGAN discriminator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            norm_layer      -- normalization layer
        """
        super(NLayerDiscriminator, self).__init__()
        if not use_actnorm:
            norm_layer = nn.BatchNorm2d
        else:
            norm_layer = ActNorm
        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
            use_bias = norm_layer.func != nn.BatchNorm2d
        else:
            use_bias = norm_layer != nn.BatchNorm2d

        kw = 4
        padw = 1
        sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** n, 8)
            sequence += [
                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True)
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8)
        sequence += [
            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True)
        ]

        sequence += [
            nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]  # output 1 channel prediction map
        self.main = nn.Sequential(*sequence)

        self.apply(self._init_weights)
    
    def _init_weights(self, module):    
        if isinstance(module, nn.Conv2d):
            nn.init.normal_(module.weight.data, 0.0, 0.02)
        elif isinstance(module, nn.BatchNorm2d):
            nn.init.normal_(module.weight.data, 1.0, 0.02)
            nn.init.constant_(module.bias.data, 0)

    def forward(self, input):
        """Standard forward."""
        return self.main(input)


class ActNorm(nn.Module):
    def __init__(self, num_features, logdet=False, affine=True,
                 allow_reverse_init=False):
        assert affine
        super().__init__()
        self.logdet = logdet
        self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
        self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
        self.allow_reverse_init = allow_reverse_init

        self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))

    def initialize(self, input):
        with torch.no_grad():
            flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
            mean = (
                flatten.mean(1)
                .unsqueeze(1)
                .unsqueeze(2)
                .unsqueeze(3)
                .permute(1, 0, 2, 3)
            )
            std = (
                flatten.std(1)
                .unsqueeze(1)
                .unsqueeze(2)
                .unsqueeze(3)
                .permute(1, 0, 2, 3)
            )

            self.loc.data.copy_(-mean)
            self.scale.data.copy_(1 / (std + 1e-6))

    def forward(self, input, reverse=False):
        if reverse:
            return self.reverse(input)
        if len(input.shape) == 2:
            input = input[:,:,None,None]
            squeeze = True
        else:
            squeeze = False

        _, _, height, width = input.shape

        if self.training and self.initialized.item() == 0:
            self.initialize(input)
            self.initialized.fill_(1)

        h = self.scale * (input + self.loc)

        if squeeze:
            h = h.squeeze(-1).squeeze(-1)

        if self.logdet:
            log_abs = torch.log(torch.abs(self.scale))
            logdet = height*width*torch.sum(log_abs)
            logdet = logdet * torch.ones(input.shape[0]).to(input)
            return h, logdet

        return h

    def reverse(self, output):
        if self.training and self.initialized.item() == 0:
            if not self.allow_reverse_init:
                raise RuntimeError(
                    "Initializing ActNorm in reverse direction is "
                    "disabled by default. Use allow_reverse_init=True to enable."
                )
            else:
                self.initialize(output)
                self.initialized.fill_(1)

        if len(output.shape) == 2:
            output = output[:,:,None,None]
            squeeze = True
        else:
            squeeze = False

        h = output / self.scale - self.loc

        if squeeze:
            h = h.squeeze(-1).squeeze(-1)
        return h