File size: 20,842 Bytes
8b24305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "55c95870",
   "metadata": {},
   "outputs": [],
   "source": [
    "import csv\n",
    "import gzip\n",
    "from math import log\n",
    "from collections import Counter\n",
    "from sys import maxsize\n",
    "import numpy as np\n",
    "import joblib\n",
    "from collections import OrderedDict\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "from collections import defaultdict\n",
    "import sys\n",
    "from scipy.sparse import dok_matrix\n",
    "from sklearn.preprocessing import normalize\n",
    "from sklearn.decomposition import TruncatedSVD\n",
    "\n",
    "\n",
    "\n",
    "posts_file = 'posts-2024-04-14.csv.gz'\n",
    "fluffyrock_tags_list_file = 'fluffyrock_3m.csv'\n",
    "\n",
    "\n",
    "def extract_artist_names(file_path):\n",
    "    \"\"\"\n",
    "    Extract artist names from a CSV file where each row contains tag information,\n",
    "    and the first column contains the tag's name. Artist tags start with 'by_'.\n",
    "\n",
    "    :param file_path: Path to the CSV file\n",
    "    :return: A set containing artist names without the 'by_' prefix\n",
    "    \"\"\"\n",
    "    artists = set()\n",
    "\n",
    "    # Open the CSV file and read it\n",
    "    with open(file_path, newline='', encoding='utf-8') as csvfile:\n",
    "        reader = csv.reader(csvfile)\n",
    "        \n",
    "        # Iterate over each row in the CSV file\n",
    "        for row in reader:\n",
    "            tag_name = row[0]  # Assuming the first column contains the tag names\n",
    "            if tag_name.startswith('by_'):\n",
    "                # Strip 'by_' from the start of the tag name and add it to the set\n",
    "                artist_name = tag_name[3:]  # Remove the first three characters 'by_'\n",
    "                artists.add(tag_name)\n",
    "\n",
    "    return artists\n",
    "\n",
    "\n",
    "def build_tag_list(tags, e621_rating_character, fav_count, artist_names):\n",
    "    results = []\n",
    "    \n",
    "    #score\n",
    "    score_value = min(1.0, (log(int(fav_count)+1) / 10))\n",
    "    rounded_score_value = round(score_value * 10)\n",
    "    results.append(f\"score: {rounded_score_value}\")\n",
    "        \n",
    "    #rating\n",
    "    results.append(\"rating:\" + e621_rating_character)\n",
    "    \n",
    "    #regular tags and artists\n",
    "    for tag in tags:\n",
    "        if tag in artist_names:\n",
    "            results.append(\"by_\" + tag)\n",
    "        else:\n",
    "            results.append(tag)\n",
    "    return results\n",
    "\n",
    "\n",
    "def read_csv_as_dict(file_path):\n",
    "    \"\"\"\n",
    "    Generator function to read a gzipped CSV file and yield each row as a dictionary\n",
    "    where keys are the column names and values are the data in each column.\n",
    "\n",
    "    :param file_path: Path to the .csv.gz file\n",
    "    \"\"\"\n",
    "    \n",
    "    #counter=0\n",
    "    with gzip.open(file_path, 'rt', newline='', encoding='utf-8') as gz_file:\n",
    "        csv.field_size_limit(1000000)\n",
    "        reader = csv.DictReader(gz_file)\n",
    "        for row in reader:\n",
    "            #counter += 1\n",
    "            #if counter % 100 == 0:\n",
    "            yield row\n",
    "            \n",
    "            \n",
    "def process_tags_from_csv(file_path, artist_names):\n",
    "    \"\"\"\n",
    "    Generator function that reads rows from a CSV file, processes each row to extract and\n",
    "    build tag lists, and yields these lists one at a time.\n",
    "\n",
    "    :param file_path: The path to the gzipped CSV file.\n",
    "    :param artist_names: A set containing all artist names for tag processing.\n",
    "    :return: Yields lists of tags for each row.\n",
    "    \"\"\"\n",
    "    for row in read_csv_as_dict(file_path):\n",
    "        base_tags = row['tag_string'].split(' ')\n",
    "        rating_character = row['rating']\n",
    "        fav_count = row['fav_count']\n",
    "        all_tags = build_tag_list(base_tags, rating_character, fav_count, artist_names)\n",
    "        yield all_tags\n",
    "        \n",
    "        \n",
    "def construct_pseudo_vector(pseudo_doc_terms, idf_loaded, tag_to_column_loaded):\n",
    "    # Initialize a vector of zeros with the length of the term_to_index mapping\n",
    "    pseudo_vector = np.zeros(len(tag_to_column_loaded))\n",
    "    \n",
    "    # Fill in the vector for terms in the pseudo document\n",
    "    for term in pseudo_doc_terms:\n",
    "        if term in tag_to_column_loaded:\n",
    "            index = tag_to_column_loaded[term]\n",
    "            pseudo_vector[index] = idf_loaded.get(term, 0)\n",
    "    \n",
    "    # Return the vector as a 2D array for compatibility with SVD transform\n",
    "    return pseudo_vector.reshape(1, -1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0a9becfd",
   "metadata": {},
   "outputs": [],
   "source": [
    "all_artist_names = extract_artist_names(fluffyrock_tags_list_file)\n",
    "\n",
    "tag_count = Counter()\n",
    "min_occurrences = 200\n",
    "    \n",
    "for all_tags in process_tags_from_csv(posts_file, all_artist_names):\n",
    "    tag_count.update(all_tags)\n",
    "    \n",
    "\n",
    "# Apply the counting logic from the first code snippet\n",
    "sorted_tags = tag_count.most_common()\n",
    "filtered_tags = [tag for tag, count in sorted_tags if count >= min_occurrences]\n",
    "\n",
    "# Print tag counts before and after filtering\n",
    "print(\"Tag count before filtering: \", len(tag_count))\n",
    "print(\"Tag count after filtering: \", len(filtered_tags))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56f8d7cd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize a dictionary to hold the co-occurrences for each tag in filtered_tags\n",
    "# Using a nested defaultdict for automatic handling of missing keys\n",
    "pseudo_docs = defaultdict(lambda: defaultdict(int))\n",
    "\n",
    "# Number of tags processed\n",
    "total_rows_processed = 0\n",
    "\n",
    "# Read each row and process the tags\n",
    "for all_tags in process_tags_from_csv(posts_file, all_artist_names):\n",
    "    # Filter the tags in the current list to include only those in filtered_tags\n",
    "    filtered_tag_list = [tag for tag in all_tags if tag in filtered_tags]\n",
    "    \n",
    "    # For each tag in the filtered list\n",
    "    for tag in filtered_tag_list:\n",
    "        # For each co-occurring tag in the same list\n",
    "        for co_occur_tag in filtered_tag_list:\n",
    "            if co_occur_tag != tag:\n",
    "                pseudo_docs[tag][co_occur_tag] += 1\n",
    "\n",
    "    # Counting total tags processed for progress monitoring\n",
    "    total_rows_processed += 1\n",
    "    if total_rows_processed % 10000 == 0:\n",
    "        print(f\"Processed {total_rows_processed} rows\", file=sys.stderr)\n",
    "\n",
    "print(\"Processing complete.\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b1d011a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Number of pseudo-documents\n",
    "N = len(pseudo_docs)\n",
    "\n",
    "# Calculate TF and DF\n",
    "tf = {}\n",
    "df = {}\n",
    "for doc, terms in pseudo_docs.items():\n",
    "    tf[doc] = {}\n",
    "    total_terms = sum(terms.values())\n",
    "    for term, count in terms.items():\n",
    "        tf[doc][term] = count / total_terms  # Term Frequency\n",
    "        df[term] = df.get(term, 0) + 1  # Document Frequency\n",
    "        \n",
    "# Ensure all terms are indexed\n",
    "all_terms = set(df.keys())\n",
    "term_to_column_index = {term: idx for idx, term in enumerate(all_terms)}\n",
    "\n",
    "# Calculate IDF\n",
    "idf = {term: log((N + 1) / (df_val + 1)) for term, df_val in df.items()}  # Adding 1 to prevent division by zero\n",
    "\n",
    "# Initialize the TF-IDF matrix\n",
    "tfidf_matrix = dok_matrix((N, len(df)), dtype=float)\n",
    "\n",
    "# Mapping of tags to matrix rows\n",
    "tag_to_row = {tag: idx for idx, tag in enumerate(pseudo_docs)}\n",
    "\n",
    "# Compute TF-IDF and fill the matrix\n",
    "for doc, terms in tf.items():\n",
    "    row_idx = tag_to_row[doc]\n",
    "    for term, tf_val in terms.items():\n",
    "        col_idx = term_to_column_index[term]  # Use term_to_index for column indexing\n",
    "        tfidf_matrix[row_idx, col_idx] = tf_val * idf[term]\n",
    "\n",
    "# Convert to CSR format for efficient row slicing\n",
    "tfidf_matrix = tfidf_matrix.tocsr()\n",
    "\n",
    "print(\"TF-IDF matrix shape:\", tfidf_matrix.shape)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b098a5fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Choose the number of components for the reduced dimensionality\n",
    "n_components = 300  # For example, reducing to 300 dimensions\n",
    "\n",
    "# Initialize the TruncatedSVD object\n",
    "svd = TruncatedSVD(n_components=n_components, random_state=42)\n",
    "\n",
    "# Fit and transform the TF-IDF matrix\n",
    "reduced_matrix = svd.fit_transform(tfidf_matrix)\n",
    "\n",
    "# 'reduced_matrix' now has a shape of (8500, n_components), e.g., (8500, 300)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "023ae26f",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "06ec21c4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 1: Construct TF vector for the pseudo-document\n",
    "pseudo_doc_terms = [\"female\"]\n",
    "pseudo_tfidf_vector = construct_pseudo_vector(pseudo_doc_terms, idf, term_to_column_index)\n",
    "\n",
    "# Assuming 'tfidf_matrix' is your original TF-IDF matrix and 'reduced_matrix' is obtained from Truncated SVD\n",
    "# 'pseudo_tfidf_vector' is the TF-IDF vector for your pseudo-document, constructed as previously discussed\n",
    "\n",
    "# For the original TF-IDF matrix\n",
    "# Compute cosine similarities\n",
    "cosine_similarities_full = cosine_similarity(pseudo_tfidf_vector, tfidf_matrix).flatten()\n",
    "print(\"Cosine similarities (full matrix):\", cosine_similarities_full)\n",
    "# Identify the indices of the top 10 most similar tags\n",
    "top_indices_full = np.argsort(cosine_similarities_full)[-10:][::-1]\n",
    "\n",
    "# For the reduced matrix\n",
    "# Reduce the dimensionality of the pseudo-document vector\n",
    "# Before calculating similarities, print the TF-IDF vectors\n",
    "print(\"Pseudo TF-IDF vector:\", pseudo_tfidf_vector)\n",
    "reduced_pseudo_vector = svd.transform(pseudo_tfidf_vector)\n",
    "print(\"Reduced pseudo-document vector:\", reduced_pseudo_vector)\n",
    "\n",
    "# Compute cosine similarities in the reduced space\n",
    "cosine_similarities_reduced = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()\n",
    "print(\"Cosine similarities (reduced matrix):\", cosine_similarities_reduced)\n",
    "\n",
    "\n",
    "# Identify the indices of the top 10 most similar tags in the reduced space, sorted from most to least similar\n",
    "top_indices_reduced = np.argsort(cosine_similarities_reduced)[-10:][::-1]\n",
    "\n",
    "\n",
    "# Convert indices to tag names using the inverse of your 'tag_to_row' mapping\n",
    "# Printing the tag to index and index to tag mappings\n",
    "print(\"tag_to_row mapping (partial):\", dict(list(tag_to_row.items())[:12]))  # Print only first 10 for brevity\n",
    "row_to_tag = {idx: tag for tag, idx in tag_to_row.items()}\n",
    "print(\"row_to_tag mapping (partial):\", dict(list(row_to_tag.items())[:12]))\n",
    "\n",
    "# Generate lists of tags with their corresponding similarity scores\n",
    "top_tags_full = [(row_to_tag[idx], cosine_similarities_full[idx]) for idx in top_indices_full]\n",
    "top_tags_reduced = [(row_to_tag[idx], cosine_similarities_reduced[idx]) for idx in top_indices_reduced]\n",
    "\n",
    "# Output the results with scores\n",
    "print(\"Most similar tags (Full Matrix):\")\n",
    "for tag, score in top_tags_full:\n",
    "    print(f\"{tag}: {score:.4f}\")\n",
    "\n",
    "print(\"Most similar tags (Reduced Matrix):\")\n",
    "for tag, score in top_tags_reduced:\n",
    "    print(f\"{tag}: {score:.4f}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "91753fa3",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Save the model to a file\n",
    "\n",
    "# Package necessary components\n",
    "components_to_save = {\n",
    "    'idf': idf,\n",
    "    'tag_to_column_index': term_to_column_index,\n",
    "    'row_to_tag': row_to_tag, \n",
    "    'reduced_matrix': reduced_matrix,\n",
    "    'svd_model': svd\n",
    "}\n",
    "\n",
    "# Save the components into a file\n",
    "joblib.dump(components_to_save, 'components_file418.joblib')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2e08dc1a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d066db2f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Most similar tags (Reduced Matrix):\n",
      "nameless_(arbuzbudesh): 0.0000\n",
      "knotted_dildo: 0.0000\n",
      "black_legs: 0.0000\n",
      "disguise: 0.0000\n",
      "lineup: 0.0000\n",
      "olympics: 0.0000\n",
      "burping: 0.0000\n",
      "pink_collar: 0.0000\n",
      "team_rocket: 0.0000\n",
      "studded_bracelet: 0.0000\n"
     ]
    }
   ],
   "source": [
    "#Reload and test file\n",
    "\n",
    "# Load the saved components from the joblib file\n",
    "components = joblib.load('tf_idf_files_418_updated.joblib')\n",
    "\n",
    "# Extract necessary components\n",
    "idf = components['idf']\n",
    "term_to_column_index = components['tag_to_column_index']\n",
    "row_to_tag = components['row_to_tag']\n",
    "reduced_matrix = components['reduced_matrix']\n",
    "svd = components['svd_model']\n",
    "\n",
    "# Construct the TF-IDF vector for \"domestic_dog\"\n",
    "pseudo_tfidf_vector = construct_pseudo_vector(\"blue_(jurassic_world)\", idf, term_to_column_index)\n",
    "\n",
    "# Reduce the dimensionality of the pseudo-document vector for the reduced matrix\n",
    "reduced_pseudo_vector = svd.transform(pseudo_tfidf_vector)\n",
    "\n",
    "# Compute cosine similarities in the reduced space\n",
    "cosine_similarities_reduced = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()\n",
    "\n",
    "# Sort the indices by descending cosine similarity\n",
    "top_indices_reduced = np.argsort(cosine_similarities_reduced)[::-1][:10]\n",
    "\n",
    "# Display the most similar tags in the reduced matrix with their scores\n",
    "print(\"Most similar tags (Reduced Matrix):\")\n",
    "for idx in top_indices_reduced:\n",
    "    tag = row_to_tag[idx]\n",
    "    score = cosine_similarities_reduced[idx]\n",
    "    print(f\"{tag}: {score:.4f}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ddea5f32",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74897a5c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c0c5b32d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9ff9a331",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "91c66b57",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a830c6cf",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4cdc98f0",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "150d66f3",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "337b1f65",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "34d2fde1",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9fc197d8",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bfa9c299",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "551a8453",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0dcdeb9e",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "537c9e26",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa873abf",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "41aca76f",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "36a3ae96",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fb59bac3",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "39c87db9",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1646e731",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "99f95d09",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9d6a67c2",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "32acbfd7",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3c17cd42",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d333776c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1e8c7511",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "acf35591",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "101fb083",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f8bd8551",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "271b9c12",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a232e088",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "43df0240",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8dbb05e8",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9730cb16",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d38f92b2",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "879f5463",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}