Spaces:
Build error
Build error
File size: 20,613 Bytes
711b041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import collections
import json
import os
import time
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# from gensim.models import KeyedVectors
from FakeVD.code_test.models.Baselines import *
from FakeVD.code_test.models.FANVM import FANVMModel
from FakeVD.code_test.models.SVFEND import SVFENDModel
from FakeVD.code_test.models.TikTec import TikTecModel
from FakeVD.code_test.utils.dataloader import *
from FakeVD.code_test.models.Trainer import Trainer
from FakeVD.code_test.models.Trainer_3set import Trainer3
def pad_sequence(seq_len,lst, emb):
result=[]
for video in lst:
if isinstance(video, list):
video = torch.stack(video)
ori_len=video.shape[0]
if ori_len == 0:
video = torch.zeros([seq_len,emb],dtype=torch.long)
elif ori_len>=seq_len:
if emb == 200:
video=torch.FloatTensor(video[:seq_len])
else:
video=torch.LongTensor(video[:seq_len])
else:
video=torch.cat([video,torch.zeros([seq_len-ori_len,video.shape[1]],dtype=torch.long)],dim=0)
if emb == 200:
video=torch.FloatTensor(video)
else:
video=torch.LongTensor(video)
result.append(video)
return torch.stack(result)
def pad_sequence_bbox(seq_len,lst):
result=[]
for video in lst:
if isinstance(video, list):
video = torch.stack(video)
ori_len=video.shape[0]
if ori_len == 0:
video = torch.zeros([seq_len,45,4096],dtype=torch.float)
elif ori_len>=seq_len:
video=torch.FloatTensor(video[:seq_len])
else:
video=torch.cat([video,torch.zeros([seq_len-ori_len,45,4096],dtype=torch.float)],dim=0)
result.append(video)
return torch.stack(result)
def pad_frame_sequence(seq_len,lst):
attention_masks = []
result=[]
for video in lst:
video=torch.FloatTensor(video)
ori_len=video.shape[0]
if ori_len>=seq_len:
gap=ori_len//seq_len
video=video[::gap][:seq_len]
mask = np.ones((seq_len))
else:
video=torch.cat((video,torch.zeros([seq_len-ori_len,video.shape[1]],dtype=torch.float)),dim=0)
mask = np.append(np.ones(ori_len), np.zeros(seq_len-ori_len))
result.append(video)
mask = torch.IntTensor(mask)
attention_masks.append(mask)
return torch.stack(result), torch.stack(attention_masks)
def _init_fn(worker_id):
np.random.seed(2022)
def SVFEND_collate_fn(batch):
num_frames = 83
num_audioframes = 50
title_inputid = [item['title_inputid'] for item in batch]
title_mask = [item['title_mask'] for item in batch]
frames = [item['frames'] for item in batch]
frames, frames_masks = pad_frame_sequence(num_frames, frames)
audioframes = [item['audioframes'] for item in batch]
audioframes, audioframes_masks = pad_frame_sequence(num_audioframes, audioframes)
c3d = [item['c3d'] for item in batch]
c3d, c3d_masks = pad_frame_sequence(num_frames, c3d)
label = [item['label'] for item in batch]
return {
'label': torch.stack(label),
'title_inputid': torch.stack(title_inputid),
'title_mask': torch.stack(title_mask),
'audioframes': audioframes,
'audioframes_masks': audioframes_masks,
'frames':frames,
'frames_masks': frames_masks,
'c3d': c3d,
'c3d_masks': c3d_masks,
}
def FANVM_collate_fn(batch):
num_comments = 23
num_frames = 83
title_inputid = [item['title_inputid'] for item in batch]
title_mask = [item['title_mask'] for item in batch]
comments_like = [item['comments_like'] for item in batch]
comments_inputid = [item['comments_inputid'] for item in batch]
comments_mask = [item['comments_mask'] for item in batch]
comments_inputid_resorted = []
comments_mask_resorted = []
comments_like_resorted = []
for idx in range(len(comments_like)):
comments_like_one = comments_like[idx]
comments_inputid_one = comments_inputid[idx]
comments_mask_one = comments_mask[idx]
if comments_like_one.shape != torch.Size([0]):
comments_inputid_one, comments_mask_one, comments_like_one = (list(t) for t in zip(*sorted(zip(comments_inputid_one, comments_mask_one, comments_like_one), key=lambda s: s[2], reverse=True)))
comments_inputid_resorted.append(comments_inputid_one)
comments_mask_resorted.append(comments_mask_one)
comments_like_resorted.append(comments_like_one)
comments_inputid = pad_sequence(num_comments,comments_inputid_resorted,250)
comments_mask = pad_sequence(num_comments,comments_mask_resorted,250)
comments_like=[]
for idx in range(len(comments_like_resorted)):
comments_like_resorted_one = comments_like_resorted[idx]
if len(comments_like_resorted_one)>=num_comments:
comments_like.append(torch.tensor(comments_like_resorted_one[:num_comments]))
else:
if isinstance(comments_like_resorted_one, list):
comments_like.append(torch.tensor(comments_like_resorted_one+[0]*(num_comments-len(comments_like_resorted_one))))
else:
comments_like.append(torch.tensor(comments_like_resorted_one.tolist()+[0]*(num_comments-len(comments_like_resorted_one))))
frames = [item['frames'] for item in batch]
frames, frames_masks = pad_frame_sequence(num_frames, frames)
frame_thmub = [item['frame_thmub'] for item in batch]
label = [item['label'] for item in batch]
label_event = [item['label_event'] for item in batch]
s = [item['s'] for item in batch]
return {
'label': torch.stack(label),
'title_inputid': torch.stack(title_inputid),
'title_mask': torch.stack(title_mask),
'comments_inputid': comments_inputid,
'comments_mask': comments_mask,
'comments_like': torch.stack(comments_like),
'frames':frames,
'frames_masks': frames_masks,
'frame_thmub': torch.stack(frame_thmub),
's': torch.stack(s),
'label_event':torch.stack(label_event),
}
def bbox_collate_fn(batch):
num_frames = 83
bbox_vgg = [item['bbox_vgg'] for item in batch]
bbox_vgg = pad_sequence_bbox(num_frames,bbox_vgg)
label = [item['label'] for item in batch]
return {
'label': torch.stack(label),
'bbox_vgg': bbox_vgg,
}
def c3d_collate_fn(batch):
num_frames = 83
c3d = [item['c3d'] for item in batch]
c3d, c3d_masks = pad_frame_sequence(num_frames, c3d)
label = [item['label'] for item in batch]
return {
'label': torch.stack(label),
'c3d': c3d,
'c3d_masks': c3d_masks,
}
def vgg_collate_fn(batch):
num_frames = 83
frames = [item['frames'] for item in batch]
frames, frames_masks = pad_frame_sequence(num_frames, frames)
label = [item['label'] for item in batch]
return {
'label': torch.stack(label),
'frames':frames,
'frames_masks': frames_masks,
}
def comments_collate_fn(batch):
num_comments = 23
comments_like = [item['comments_like'] for item in batch]
comments_inputid = [item['comments_inputid'] for item in batch]
comments_mask = [item['comments_mask'] for item in batch]
comments_inputid_resorted = []
comments_mask_resorted = []
comments_like_resorted = []
for idx in range(len(comments_like)):
comments_like_one = comments_like[idx]
comments_inputid_one = comments_inputid[idx]
comments_mask_one = comments_mask[idx]
if comments_like_one.shape != torch.Size([0]):
comments_inputid_one, comments_mask_one, comments_like_one = (list(t) for t in zip(*sorted(zip(comments_inputid_one, comments_mask_one, comments_like_one), key=lambda s: s[2], reverse=True)))
comments_inputid_resorted.append(comments_inputid_one)
comments_mask_resorted.append(comments_mask_one)
comments_like_resorted.append(comments_like_one)
comments_inputid = pad_sequence(num_comments,comments_inputid_resorted,250)
comments_mask = pad_sequence(num_comments,comments_mask_resorted,250)
comments_like=[]
for idx in range(len(comments_like_resorted)):
comments_like_resorted_one = comments_like_resorted[idx]
if len(comments_like_resorted_one)>=num_comments:
comments_like.append(torch.tensor(comments_like_resorted_one[:num_comments]))
else:
if isinstance(comments_like_resorted_one, list):
comments_like.append(torch.tensor(comments_like_resorted_one+[0]*(num_comments-len(comments_like_resorted_one))))
else:
comments_like.append(torch.tensor(comments_like_resorted_one.tolist()+[0]*(num_comments-len(comments_like_resorted_one))))
label = [item['label'] for item in batch]
return {
'label': torch.stack(label),
'comments_inputid': comments_inputid,
'comments_mask': comments_mask,
'comments_like': torch.stack(comments_like),
}
def title_w2v_collate_fn(batch):
length_title = 128
title_w2v = [item['title_w2v'] for item in batch]
title_w2v = pad_sequence(length_title, title_w2v, 100)
label = [item['label'] for item in batch]
return {
'label': torch.stack(label),
'title_w2v': title_w2v,
}
def tictec_collate_fn(batch):
"""
将一批样本组合成一个批次。
Args:
batch (list of dict): 包含单个样本的列表,每个样本是一个字典,包含 'label'、'caption_feature'、'visual_feature'、'asr_feature'、'mask_K' 和 'mask_N'。
Returns:
dict: 包含批次数据的字典,'labels' 是一个张量,其他特征和掩码也是张量。
"""
num_frames = 83
labels = torch.stack([item['label'] for item in batch])
caption_features = torch.stack([item['caption_feature'] for item in batch])
visual_features = torch.stack([item['visual_feature'] for item in batch])
asr_features = torch.stack([item['asr_feature'] for item in batch])
mask_Ks = torch.stack([item['mask_K'] for item in batch])
mask_Ns = torch.stack([item['mask_N'] for item in batch])
return {
'label': labels,
'caption_feature': caption_features,
'visual_feature': visual_features,
'asr_feature': asr_features,
'mask_K': mask_Ks,
'mask_N': mask_Ns,
}
class Run():
def __init__(self,
config
):
self.model_name = config['model_name']
self.mode_eval = config['mode_eval']
self.fold = config['fold']
self.data_type = 'SVFEND'
self.epoches = config['epoches']
self.batch_size = config['batch_size']
self.num_workers = config['num_workers']
self.epoch_stop = config['epoch_stop']
self.seed = config['seed']
self.device = config['device']
self.lr = config['lr']
self.lambd=config['lambd']
self.save_param_dir = config['path_param']
self.path_tensorboard = config['path_tensorboard']
self.dropout = config['dropout']
self.weight_decay = config['weight_decay']
self.event_num = 616
self.mode ='normal'
def get_dataloader(self,data_type,data_fold):
collate_fn=None
if data_type=='SVFEND':
dataset_train = SVFENDDataset(f'vid_fold_{1}.txt')
dataset_test = SVFENDDataset(f'vid_fold_{2}.txt')
collate_fn=SVFEND_collate_fn
elif data_type=='FANVM':
dataset_train = FANVMDataset_train(f'vid_fold_no_{data_fold}.txt')
dataset_test = FANVMDataset_test(path_vid_train=f'vid_fold_no_{data_fold}.txt', path_vid_test=f'vid_fold_{data_fold}.txt')
collate_fn = FANVM_collate_fn
elif data_type=='c3d':
dataset_train = C3DDataset(f'vid_fold_no_{data_fold}.txt')
dataset_test = C3DDataset(f'vid_fold_{data_fold}.txt')
collate_fn = c3d_collate_fn
elif data_type=='vgg':
dataset_train = VGGDataset(f'vid_fold_no_{data_fold}.txt')
dataset_test = VGGDataset(f'vid_fold_{data_fold}.txt')
collate_fn = vgg_collate_fn
elif data_type=='bbox':
dataset_train = BboxDataset('vid_fold_no1.txt')
dataset_test = BboxDataset('vid_fold_1.txt')
collate_fn = bbox_collate_fn
elif data_type=='comments':
dataset_train = CommentsDataset(f'vid_fold_no_{data_fold}.txt')
dataset_test = CommentsDataset(f'vid_fold_{data_fold}.txt')
collate_fn = comments_collate_fn
elif data_type=='TikTec':
dataset_train = TikTecDataset(f'vid_fold_no_{data_fold}.txt')
dataset_test = TikTecDataset(f'vid_fold_{data_fold}.txt')
collate_fn = tictec_collate_fn
# elif data_type=='w2v':
# wv_from_text = KeyedVectors.load_word2vec_format("./stores/tencent-ailab-embedding-zh-d100-v0.2.0-s/tencent-ailab-embedding-zh-d100-v0.2.0-s.txt", binary=False)
# dataset_train = Title_W2V_Dataset(f'vid_fold_no{data_fold}.txt', wv_from_text)
# dataset_test = Title_W2V_Dataset(f'vid_fold_{data_fold}.txt', wv_from_text)
# collate_fn = title_w2v_collate_fn
train_dataloader = DataLoader(dataset_train, batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True,
shuffle=True,
worker_init_fn=_init_fn,
collate_fn=collate_fn)
test_dataloader=DataLoader(dataset_test, batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True,
shuffle=False,
worker_init_fn=_init_fn,
collate_fn=collate_fn)
dataloaders = dict(zip(['train', 'test'],[train_dataloader, test_dataloader]))
return dataloaders
def get_dataloader_temporal(self, data_type):
collate_fn=None
if data_type=='SVFEND':
dataset_train = SVFENDDataset('vid_time3_train.txt')
dataset_val = SVFENDDataset('vid_time3_val.txt')
dataset_test = SVFENDDataset('vid_time3_test.txt')
collate_fn=SVFEND_collate_fn
elif data_type=='FANVM':
dataset_train = FANVMDataset_train('vid_time3_train.txt')
dataset_val = FANVMDataset_test(path_vid_train='vid_time3_train.txt', path_vid_test='vid_time3_valid.txt')
dataset_test = FANVMDataset_test(path_vid_train='vid_time3_train.txt', path_vid_test='vid_time3_test.txt')
collate_fn = FANVM_collate_fn
else:
# can be added
print ("Not available")
train_dataloader = DataLoader(dataset_train, batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True,
shuffle=True,
worker_init_fn=_init_fn,
collate_fn=collate_fn)
val_dataloader = DataLoader(dataset_val, batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True,
shuffle=False,
worker_init_fn=_init_fn,
collate_fn=collate_fn)
test_dataloader=DataLoader(dataset_test, batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True,
shuffle=False,
worker_init_fn=_init_fn,
collate_fn=collate_fn)
dataloaders = dict(zip(['train', 'val', 'test'],[train_dataloader, val_dataloader, test_dataloader]))
return dataloaders
def get_model(self):
if self.model_name == 'SVFEND':
self.model = SVFENDModel(bert_model='bert-base-chinese', fea_dim=128,dropout=self.dropout)
elif self.model_name == 'FANVM':
self.model = FANVMModel(bert_model='bert-base-chinese', fea_dim=128)
self.data_type = "FANVM"
self.mode = 'eann'
elif self.model_name == 'C3D':
self.model = bC3D(fea_dim=128)
self.data_type = "c3d"
elif self.model_name == 'VGG':
self.model = bVGG(fea_dim=128)
self.data_type = "vgg"
elif self.model_name == 'Bbox':
self.model = bBbox(fea_dim=128)
self.data_type = "bbox"
elif self.model_name == 'Vggish':
self.model = bVggish(fea_dim=128)
elif self.model_name == 'Bert':
self.model = bBert(bert_model='bert-base-chinese', fea_dim=128,dropout=self.dropout)
elif self.model_name == 'TextCNN':
self.model = bTextCNN(fea_dim=128, vocab_size=100)
self.data_type = "w2v"
elif self.model_name == 'Comments':
self.model = bComments(bert_model='bert-base-chinese', fea_dim=128)
self.data_type = "comments"
elif self.model_name == 'TikTec':
self.model = TikTecModel(VCIF_dropout=self.dropout, MLP_dropout=self.dropout)
self.data_type = 'TikTec'
return self.model
def main(self):
if self.mode_eval == "nocv":
self.model = self.get_model()
dataloaders = self.get_dataloader(data_type=self.data_type, data_fold=self.fold)
trainer = Trainer(model=self.model, device = self.device, lr = self.lr, dataloaders = dataloaders, epoches = self.epoches, dropout = self.dropout, weight_decay = self.weight_decay, mode = self.mode, model_name = self.model_name, event_num = self.event_num,
epoch_stop = self.epoch_stop, save_param_path = self.save_param_dir+self.data_type+"/"+self.model_name+"/", writer = SummaryWriter(self.path_tensorboard))
result=trainer.train()
for metric in ['acc', 'f1', 'precision', 'recall', 'auc']:
print ('%s : %.4f' % (metric, result[metric]))
elif self.mode_eval == "temporal":
self.model = self.get_model()
dataloaders = self.get_dataloader_temporal(data_type=self.data_type)
trainer = Trainer3(model=self.model, device = self.device, lr = self.lr, dataloaders = dataloaders, epoches = self.epoches, dropout = self.dropout, weight_decay = self.weight_decay, mode = self.mode, model_name = self.model_name, event_num = self.event_num,
epoch_stop = self.epoch_stop, save_param_path = self.save_param_dir+self.data_type+"/"+self.model_name+"/", writer = SummaryWriter(self.path_tensorboard))
result=trainer.train()
for metric in ['acc', 'f1', 'precision', 'recall', 'auc']:
print ('%s : %.4f' % (metric, result[metric]))
return result
elif self.mode_eval == "cv":
collate_fn=None
# if self.model_name == 'TextCNN':
# wv_from_text = KeyedVectors.load_word2vec_format("./stores/tencent-ailab-embedding-zh-d100-v0.2.0-s/tencent-ailab-embedding-zh-d100-v0.2.0-s.txt", binary=False)
history = collections.defaultdict(list)
for fold in range(1, 6):
print('-' * 50)
print ('fold %d:' % fold)
print('-' * 50)
self.model = self.get_model()
dataloaders = self.get_dataloader(data_type=self.data_type, data_fold=fold)
trainer = Trainer(model = self.model, device = self.device, lr = self.lr, dataloaders = dataloaders, epoches = self.epoches, dropout = self.dropout, weight_decay = self.weight_decay, mode = self.mode, model_name = self.model_name, event_num = self.event_num,
epoch_stop = self.epoch_stop, save_param_path = self.save_param_dir+self.data_type+"/"+self.model_name+"/", writer = SummaryWriter(self.path_tensorboard+"fold_"+str(fold)+"/"))
result = trainer.train()
history['auc'].append(result['auc'])
history['f1'].append(result['f1'])
history['recall'].append(result['recall'])
history['precision'].append(result['precision'])
history['acc'].append(result['acc'])
print ('results on 5-fold cross-validation: ')
for metric in ['acc', 'f1', 'precision', 'recall', 'auc']:
print ('%s : %.4f +/- %.4f' % (metric, np.mean(history[metric]), np.std(history[metric])))
else:
print ("Not Available")
|