File size: 2,984 Bytes
711b041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init


class Linear(nn.Module):
    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.linear = nn.Linear(in_features, out_features, bias=bias)
        init.xavier_normal_(self.linear.weight)
        init.zeros_(self.linear.bias)

    def forward(self, inputs):
        return self.linear(inputs)


class ScaledDotProductAttention(nn.Module):
    def __init__(self, d_k, dropout=.1):
        super(ScaledDotProductAttention, self).__init__()
        self.scale_factor = np.sqrt(d_k)
        self.softmax = nn.Softmax(dim=-1)
        self.dropout = nn.Dropout(dropout)

    def forward(self, q, k, v, attn_mask=None):
        # q: [b_size x n_heads x len_q x d_k]
        # k: [b_size x n_heads x len_k x d_k]
        # v: [b_size x n_heads x len_v x d_v] note: (len_k == len_v)

        # attn: [b_size x n_heads x len_q x len_k]
        scores = torch.matmul(q, k.transpose(-1, -2)) / self.scale_factor
        if attn_mask is not None:
            assert attn_mask.size() == scores.size()
            scores.masked_fill_(attn_mask, -1e9)
        attn = self.dropout(self.softmax(scores))

        # outputs: [b_size x n_heads x len_q x d_v]
        context = torch.matmul(attn, v)

        return context, attn


class LayerNormalization(nn.Module):
    def __init__(self, d_hid, eps=1e-6):
        super(LayerNormalization, self).__init__()
        self.gamma = nn.Parameter(torch.ones(d_hid))
        self.beta = nn.Parameter(torch.zeros(d_hid))
        self.eps = eps

    def forward(self, z):
        mean = z.mean(dim=-1, keepdim=True,)
        std = z.std(dim=-1, keepdim=True,)
        ln_out = (z - mean) / (std + self.eps)
        ln_out = self.gamma * ln_out + self.beta

        return ln_out


class PosEncoding(nn.Module):
    def __init__(self, max_seq_len, d_word_vec):
        super(PosEncoding, self).__init__()
        pos_enc = np.array(
            [[pos / np.power(10000, 2.0 * (j // 2) / d_word_vec) for j in range(d_word_vec)]
            for pos in range(max_seq_len)])
        pos_enc[:, 0::2] = np.sin(pos_enc[:, 0::2])
        pos_enc[:, 1::2] = np.cos(pos_enc[:, 1::2])
        pad_row = np.zeros([1, d_word_vec])
        pos_enc = np.concatenate([pad_row, pos_enc]).astype(np.float32)

        # additional single row for PAD idx
        self.pos_enc = nn.Embedding(max_seq_len + 1, d_word_vec)
        # fix positional encoding: exclude weight from grad computation
        self.pos_enc.weight = nn.Parameter(torch.from_numpy(pos_enc), requires_grad=False)
        self.max_len = int(max_seq_len/10)
    def forward(self, input_len):
        max_len = self.max_len            # torch.max(input_len)
        tensor = torch.cuda.LongTensor if input_len.is_cuda else torch.LongTensor
        input_pos = tensor([list(range(1, len+1)) + [0]*(max_len-len) for len in input_len])
        return self.pos_enc(input_pos)