Spaces:
Runtime error
Runtime error
File size: 11,069 Bytes
2cb106d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import random
import warnings
import soundfile as sf
import torch
from numpy import trim_zeros
from speechbrain.pretrained import EncoderClassifier
from torch.multiprocessing import Manager
from torch.multiprocessing import Process
from torch.multiprocessing import set_start_method
from torch.utils.data import Dataset
from tqdm import tqdm
from Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend
from Preprocessing.AudioPreprocessor import AudioPreprocessor
class AlignerDataset(Dataset):
def __init__(self,
path_to_transcript_dict,
cache_dir,
lang,
loading_processes=30, # careful with the amount of processes if you use silence removal, only as many processes as you have cores
min_len_in_seconds=1,
max_len_in_seconds=20,
cut_silences=False,
rebuild_cache=False,
verbose=False,
device="cpu"):
os.makedirs(cache_dir, exist_ok=True)
if not os.path.exists(os.path.join(cache_dir, "aligner_train_cache.pt")) or rebuild_cache:
if (device == "cuda" or device == torch.device("cuda")) and cut_silences:
try:
set_start_method('spawn') # in order to be able to make use of cuda in multiprocessing
except RuntimeError:
pass
elif cut_silences:
torch.set_num_threads(1)
if cut_silences:
torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=False,
onnx=False,
verbose=False) # download and cache for it to be loaded and used later
torch.set_grad_enabled(True)
resource_manager = Manager()
self.path_to_transcript_dict = resource_manager.dict(path_to_transcript_dict)
key_list = list(self.path_to_transcript_dict.keys())
with open(os.path.join(cache_dir, "files_used.txt"), encoding='utf8', mode="w") as files_used_note:
files_used_note.write(str(key_list))
random.shuffle(key_list)
# build cache
print("... building dataset cache ...")
self.datapoints = resource_manager.list()
# make processes
key_splits = list()
process_list = list()
for i in range(loading_processes):
key_splits.append(key_list[i * len(key_list) // loading_processes:(i + 1) * len(key_list) // loading_processes])
for key_split in key_splits:
process_list.append(
Process(target=self.cache_builder_process,
args=(key_split,
lang,
min_len_in_seconds,
max_len_in_seconds,
cut_silences,
verbose,
device),
daemon=True))
process_list[-1].start()
for process in process_list:
process.join()
self.datapoints = list(self.datapoints)
tensored_datapoints = list()
# we had to turn all of the tensors to numpy arrays to avoid shared memory
# issues. Now that the multi-processing is over, we can convert them back
# to tensors to save on conversions in the future.
print("Converting into convenient format...")
norm_waves = list()
for datapoint in tqdm(self.datapoints):
tensored_datapoints.append([torch.Tensor(datapoint[0]),
torch.LongTensor(datapoint[1]),
torch.Tensor(datapoint[2]),
torch.LongTensor(datapoint[3])])
norm_waves.append(torch.Tensor(datapoint[-1]))
self.datapoints = tensored_datapoints
pop_indexes = list()
for index, el in enumerate(self.datapoints):
try:
if len(el[0][0]) != 66:
pop_indexes.append(index)
except TypeError:
pop_indexes.append(index)
for pop_index in sorted(pop_indexes, reverse=True):
print(f"There seems to be a problem in the transcriptions. Deleting datapoint {pop_index}.")
self.datapoints.pop(pop_index)
# add speaker embeddings
self.speaker_embeddings = list()
speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb",
run_opts={"device": str(device)},
savedir="Models/SpeakerEmbedding/speechbrain_speaker_embedding_ecapa")
with torch.no_grad():
for wave in tqdm(norm_waves):
self.speaker_embeddings.append(speaker_embedding_func_ecapa.encode_batch(wavs=wave.to(device).unsqueeze(0)).squeeze().cpu())
# save to cache
torch.save((self.datapoints, norm_waves, self.speaker_embeddings), os.path.join(cache_dir, "aligner_train_cache.pt"))
else:
# just load the datapoints from cache
self.datapoints = torch.load(os.path.join(cache_dir, "aligner_train_cache.pt"), map_location='cpu')
if len(self.datapoints) == 2:
# speaker embeddings are still missing, have to add them here
wave_datapoints = self.datapoints[1]
self.datapoints = self.datapoints[0]
self.speaker_embeddings = list()
speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb",
run_opts={"device": str(device)},
savedir="Models/SpeakerEmbedding/speechbrain_speaker_embedding_ecapa")
with torch.no_grad():
for wave in tqdm(wave_datapoints):
self.speaker_embeddings.append(speaker_embedding_func_ecapa.encode_batch(wavs=wave.to(device).unsqueeze(0)).squeeze().cpu())
torch.save((self.datapoints, wave_datapoints, self.speaker_embeddings), os.path.join(cache_dir, "aligner_train_cache.pt"))
else:
self.speaker_embeddings = self.datapoints[2]
self.datapoints = self.datapoints[0]
self.tf = ArticulatoryCombinedTextFrontend(language=lang, use_word_boundaries=True)
print(f"Prepared an Aligner dataset with {len(self.datapoints)} datapoints in {cache_dir}.")
def cache_builder_process(self,
path_list,
lang,
min_len,
max_len,
cut_silences,
verbose,
device):
process_internal_dataset_chunk = list()
tf = ArticulatoryCombinedTextFrontend(language=lang, use_word_boundaries=False)
_, sr = sf.read(path_list[0])
ap = AudioPreprocessor(input_sr=sr, output_sr=16000, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=cut_silences, device=device)
for path in tqdm(path_list):
if self.path_to_transcript_dict[path].strip() == "":
continue
wave, sr = sf.read(path)
dur_in_seconds = len(wave) / sr
if not (min_len <= dur_in_seconds <= max_len):
if verbose:
print(f"Excluding {path} because of its duration of {round(dur_in_seconds, 2)} seconds.")
continue
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore") # otherwise we get tons of warnings about an RNN not being in contiguous chunks
norm_wave = ap.audio_to_wave_tensor(normalize=True, audio=wave)
except ValueError:
continue
dur_in_seconds = len(norm_wave) / 16000
if not (min_len <= dur_in_seconds <= max_len):
if verbose:
print(f"Excluding {path} because of its duration of {round(dur_in_seconds, 2)} seconds.")
continue
norm_wave = torch.tensor(trim_zeros(norm_wave.numpy()))
# raw audio preprocessing is done
transcript = self.path_to_transcript_dict[path]
try:
cached_text = tf.string_to_tensor(transcript, handle_missing=False).squeeze(0).cpu().numpy()
except KeyError:
tf.string_to_tensor(transcript, handle_missing=True).squeeze(0).cpu().numpy()
continue # we skip sentences with unknown symbols
try:
if len(cached_text[0]) != 66:
print(f"There seems to be a problem with the following transcription: {transcript}")
continue
except TypeError:
print(f"There seems to be a problem with the following transcription: {transcript}")
continue
cached_text_len = torch.LongTensor([len(cached_text)]).numpy()
cached_speech = ap.audio_to_mel_spec_tensor(audio=norm_wave, normalize=False, explicit_sampling_rate=16000).transpose(0, 1).cpu().numpy()
cached_speech_len = torch.LongTensor([len(cached_speech)]).numpy()
process_internal_dataset_chunk.append([cached_text,
cached_text_len,
cached_speech,
cached_speech_len,
norm_wave.cpu().detach().numpy()])
self.datapoints += process_internal_dataset_chunk
def __getitem__(self, index):
text_vector = self.datapoints[index][0]
tokens = list()
for vector in text_vector:
for phone in self.tf.phone_to_vector:
if vector.numpy().tolist() == self.tf.phone_to_vector[phone]:
tokens.append(self.tf.phone_to_id[phone])
# this is terribly inefficient, but it's good enough for testing for now.
tokens = torch.LongTensor(tokens)
return tokens, \
self.datapoints[index][1], \
self.datapoints[index][2], \
self.datapoints[index][3], \
self.speaker_embeddings[index]
def __len__(self):
return len(self.datapoints)
|