Spaces:
Running
Running
File size: 11,732 Bytes
b3fa29f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import re
import sys
import panphon
import phonemizer
import torch
from Preprocessing.papercup_features import generate_feature_table
class ArticulatoryCombinedTextFrontend:
def __init__(self,
language,
use_word_boundaries=False, # goes together well with
# parallel models and an aligner. Doesn't go together
# well with autoregressive models.
use_explicit_eos=True,
use_prosody=False, # unfortunately the non-segmental
# nature of prosodic markers mixed with the sequential
# phonemes hurts the performance of end-to-end models a
# lot, even though one might think enriching the input
# with such information would help.
use_lexical_stress=False,
silent=True,
allow_unknown=False,
add_silence_to_end=True,
strip_silence=True):
"""
Mostly preparing ID lookups
"""
self.strip_silence = strip_silence
self.use_word_boundaries = use_word_boundaries
self.allow_unknown = allow_unknown
self.use_explicit_eos = use_explicit_eos
self.use_prosody = use_prosody
self.use_stress = use_lexical_stress
self.add_silence_to_end = add_silence_to_end
self.feature_table = panphon.FeatureTable()
if language == "en":
self.g2p_lang = "en-us"
self.expand_abbreviations = english_text_expansion
if not silent:
print("Created an English Text-Frontend")
elif language == "de":
self.g2p_lang = "de"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a German Text-Frontend")
elif language == "el":
self.g2p_lang = "el"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Greek Text-Frontend")
elif language == "es":
self.g2p_lang = "es"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Spanish Text-Frontend")
elif language == "fi":
self.g2p_lang = "fi"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Finnish Text-Frontend")
elif language == "ru":
self.g2p_lang = "ru"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Russian Text-Frontend")
elif language == "hu":
self.g2p_lang = "hu"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Hungarian Text-Frontend")
elif language == "nl":
self.g2p_lang = "nl"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Dutch Text-Frontend")
elif language == "fr":
self.g2p_lang = "fr-fr"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a French Text-Frontend")
elif language == "it":
self.g2p_lang = "it"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Italian Text-Frontend")
elif language == "pt":
self.g2p_lang = "pt"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Portuguese Text-Frontend")
elif language == "pl":
self.g2p_lang = "pl"
self.expand_abbreviations = lambda x: x
if not silent:
print("Created a Polish Text-Frontend")
# remember to also update get_language_id() when adding something here
else:
print("Language not supported yet")
sys.exit()
self.phone_to_vector_papercup = generate_feature_table()
self.phone_to_vector = dict()
for phone in self.phone_to_vector_papercup:
panphon_features = self.feature_table.word_to_vector_list(phone, numeric=True)
if panphon_features == []:
panphon_features = [[0] * 24]
papercup_features = self.phone_to_vector_papercup[phone]
self.phone_to_vector[phone] = papercup_features + panphon_features[0]
self.phone_to_id = { # this lookup must be updated manually, because the only
# other way would be extracting them from a set, which can be non-deterministic
'~': 0,
'#': 1,
'?': 2,
'!': 3,
'.': 4,
'ɜ': 5,
'ɫ': 6,
'ə': 7,
'ɚ': 8,
'a': 9,
'ð': 10,
'ɛ': 11,
'ɪ': 12,
'ᵻ': 13,
'ŋ': 14,
'ɔ': 15,
'ɒ': 16,
'ɾ': 17,
'ʃ': 18,
'θ': 19,
'ʊ': 20,
'ʌ': 21,
'ʒ': 22,
'æ': 23,
'b': 24,
'ʔ': 25,
'd': 26,
'e': 27,
'f': 28,
'g': 29,
'h': 30,
'i': 31,
'j': 32,
'k': 33,
'l': 34,
'm': 35,
'n': 36,
'ɳ': 37,
'o': 38,
'p': 39,
'ɡ': 40,
'ɹ': 41,
'r': 42,
's': 43,
't': 44,
'u': 45,
'v': 46,
'w': 47,
'x': 48,
'z': 49,
'ʀ': 50,
'ø': 51,
'ç': 52,
'ɐ': 53,
'œ': 54,
'y': 55,
'ʏ': 56,
'ɑ': 57,
'c': 58,
'ɲ': 59,
'ɣ': 60,
'ʎ': 61,
'β': 62,
'ʝ': 63,
'ɟ': 64,
'q': 65,
'ɕ': 66,
'ʲ': 67,
'ɭ': 68,
'ɵ': 69,
'ʑ': 70,
'ʋ': 71,
'ʁ': 72,
'ɨ': 73,
'ʂ': 74,
'ɬ': 75,
} # for the states of the ctc loss and dijkstra/mas in the aligner
self.id_to_phone = {v: k for k, v in self.phone_to_id.items()}
def string_to_tensor(self, text, view=False, device="cpu", handle_missing=True, input_phonemes=False):
"""
Fixes unicode errors, expands some abbreviations,
turns graphemes into phonemes and then vectorizes
the sequence as articulatory features
"""
if input_phonemes:
phones = text
else:
phones = self.get_phone_string(text=text, include_eos_symbol=True)
if view:
print("Phonemes: \n{}\n".format(phones))
phones_vector = list()
# turn into numeric vectors
for char in phones:
if handle_missing:
try:
phones_vector.append(self.phone_to_vector[char])
except KeyError:
print("unknown phoneme: {}".format(char))
else:
phones_vector.append(self.phone_to_vector[char]) # leave error handling to elsewhere
return torch.Tensor(phones_vector, device=device)
def get_phone_string(self, text, include_eos_symbol=True):
# expand abbreviations
utt = self.expand_abbreviations(text)
# phonemize
phones = phonemizer.phonemize(utt,
language_switch='remove-flags',
backend="espeak",
language=self.g2p_lang,
preserve_punctuation=True,
strip=True,
punctuation_marks=';:,.!?¡¿—…"«»“”~/',
with_stress=self.use_stress).replace(";", ",").replace("/", " ").replace("—", "") \
.replace(":", ",").replace('"', ",").replace("-", ",").replace("...", ",").replace("-", ",").replace("\n", " ") \
.replace("\t", " ").replace("¡", "").replace("¿", "").replace(",", "~").replace(" ̃", "").replace('̩', "").replace("̃", "").replace("̪", "")
# less than 1 wide characters hidden here
phones = re.sub("~+", "~", phones)
if not self.use_prosody:
# retain ~ as heuristic pause marker, even though all other symbols are removed with this option.
# also retain . ? and ! since they can be indicators for the stop token
phones = phones.replace("ˌ", "").replace("ː", "").replace("ˑ", "") \
.replace("˘", "").replace("|", "").replace("‖", "")
if not self.use_word_boundaries:
phones = phones.replace(" ", "")
else:
phones = re.sub(r"\s+", " ", phones)
phones = re.sub(" ", "~", phones)
if self.strip_silence:
phones = phones.lstrip("~").rstrip("~")
if self.add_silence_to_end:
phones += "~" # adding a silence in the end during add_silence_to_end produces more natural sounding prosody
if include_eos_symbol:
phones += "#"
phones = "~" + phones
phones = re.sub("~+", "~", phones)
return phones
def english_text_expansion(text):
"""
Apply as small part of the tacotron style text cleaning pipeline, suitable for e.g. LJSpeech.
See https://github.com/keithito/tacotron/
Careful: Only apply to english datasets. Different languages need different cleaners.
"""
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in
[('Mrs.', 'misess'), ('Mr.', 'mister'), ('Dr.', 'doctor'), ('St.', 'saint'), ('Co.', 'company'), ('Jr.', 'junior'), ('Maj.', 'major'),
('Gen.', 'general'), ('Drs.', 'doctors'), ('Rev.', 'reverend'), ('Lt.', 'lieutenant'), ('Hon.', 'honorable'), ('Sgt.', 'sergeant'),
('Capt.', 'captain'), ('Esq.', 'esquire'), ('Ltd.', 'limited'), ('Col.', 'colonel'), ('Ft.', 'fort')]]
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def get_language_id(language):
if language == "en":
return torch.LongTensor([0])
elif language == "de":
return torch.LongTensor([1])
elif language == "el":
return torch.LongTensor([2])
elif language == "es":
return torch.LongTensor([3])
elif language == "fi":
return torch.LongTensor([4])
elif language == "ru":
return torch.LongTensor([5])
elif language == "hu":
return torch.LongTensor([6])
elif language == "nl":
return torch.LongTensor([7])
elif language == "fr":
return torch.LongTensor([8])
elif language == "pt":
return torch.LongTensor([9])
elif language == "pl":
return torch.LongTensor([10])
elif language == "it":
return torch.LongTensor([11])
if __name__ == '__main__':
# test an English utterance
tfr_en = ArticulatoryCombinedTextFrontend(language="en")
print(tfr_en.string_to_tensor("This is a complex sentence, it even has a pause! But can it do this? Nice.", view=True))
tfr_en = ArticulatoryCombinedTextFrontend(language="de")
print(tfr_en.string_to_tensor("Alles klar, jetzt testen wir einen deutschen Satz. Ich hoffe es gibt nicht mehr viele unspezifizierte Phoneme.", view=True))
|